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EXAMPLE 2 Let f(#) be a function of period 2 with f(¢) = ¢? if 0 < ¢t < 2. We define f(r) for taxr,e
pud s even integer by the average value condition in (13); consequently, f(r) = 2 if tis am
even integer. The graph of the function f appears in Fig. 9.2.3. Find its Fourier seri .

Solution Here L = 1, and it is most convenient to integrate from ¢ = O to ¢
Then

1 (? 1 .1 8
A a0=~—f ttdt=|—3| = —.
-4 -2 ' 1 0 3 0 3

FIGURE 9.2.3. The period 2 With the aid of the integral formulas in Eqs. (22) through (25) of Section 9.1 we obt

function of Example 2

i

2 2
a, fot cos nrt dt

1 2nm 2 u
=] . wucosudu u = nt, t = ——
niaw> Jo nir

1 . . 2nm
3 3I:uzsmu—-zsmu+2ucosu} =—
n-ar 0

I

. 2 1 2nm
b, = f t?sin nart dt = —— f u?® sin u du
0 noar 0

1 “ nm
=—3—-—3—[-—uzcosu+2008u+2usmu] = —
nr 0

Hence the Fourier series of fis

4 4 = cosnmt 4 2 sinnt
f=5+—3 3 - 3 §

T =1 n T oa=1 n

and Theorem 1 assures us that this series converges to f(¢) for all 1.

‘We can draw some interesting consequences from the Fourier series in (15). If we

substitute £ = 0 on each side, we find that

4 4 &1
O =2=5* T 25
On solving for the series, we obtain the lovely summation
o 1 = +...1_.+_l_+_.}__+...:i (16)
> D 6

that was discovered by Euler. If we substitute t = 1 in Eq. (15), we get
1)"

4 4 2
==t 5

n

which yields
(- )"“_ LS SO S A an

2 =l-mtmE e’ 12
If we add the series in Egs. (16) and (17) and then divide by 2, the “even” terms cancel
and the result is
2
1 1 .—1—— .o s == .ZT..-—' (18)
S =1+t = + + 2

nodd
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EXAMPLE

1
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Find the temperature u(x, t) at any time in a metal rod 50 cm long, insulated on the
sides, which initially has a uniform temperature of 20°C throughout, and whose ends
are maintained at 0°C for all r > 0.

The temperature in the rod satisfies the heat conduction problem (1), (3), (4) with
L =50and f(x) =20 for0 < x < 50. Thus, from Eq. (19), the solution is

o0
i —ntwa? 2500 ;. 1TX
ulx,t) = E c,e sin W , (22)

n=1

where, from Eq. (21),

4 [0 . onmx
c = — sin —— dx
0

"5 50
0 80/nm, nodd;
= ;1;(1 — COSnIT) = {0’ 1 even. (23)
Finally, by substituting for ¢, in Eq. (22) we obtain
80 & 1 2. 22500 s MVTX
(X, 1) = — —e TTE — 24
= TS .

The expression (24) for the temperature is moderately complicated, but the negative
exponential factor in each term of the series causes the series to converge quite rapidly,

g\
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except for small values of 7 or o®. Therefore accurate results can usually be obtained
by using only a few terms of the series.

In order to display quantitative results let us measure ¢ in seconds; then o has the
units of cm?/sec. If we choose a? = 1 for convenience, this corresponds to a rod of a
material whose thermal properties are somewhere between copper and aluminum. The
behavior of the solution can be seen from the graphs in Figures 10.5.3 through 10.5.5.
In Figure 10.5.3 we show the temperature distribution in the bar at several different
times. Observe that the temperature diminishes steadily as heat in the bar is lost through
the endpoints. The way in which the temperature decays at a given point in the bar is
indicated in Figure 10.5.4, where temperature is plotted against time for a few selected
points in the bar. Finally, Figure 10.5.5 is a three-dimensional plot of u versus both x
and 7. Observe that the graphs in Figures 10.5.3 and 10.5.4 are obtained by intersecting
the surface in Figure 10.5.5 by planes on which either ¢ or x is constant. The slight
waviness in Figure 10.5.5 at ¢ == 0 results from using only a finite number of terms in
the series for u(x, t) and from the slow convergence of the series for t = 0.

t=0

20

FIGURE 10.5.3 Temperature distributions at several times for the heat conduction problem
of Example 1.

] ] I
100 200 300 400 500 t

FIGURE 10.5.4 Dependence of temperature on time at several locations for the heat conduc-
tion problem of Example 1.
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FIGURE 10.5.5 Plot of temperature u versus x and ¢ for the heat conduction problem of

Example 1.

A question with possible practical implications is to determine the time 7 at which the
entire bar has cooled to a specified temperature. For example, when is the temperature
in the entire bar no greater than 1°C? Because of the symmetry of the initial temperature
distribution and the boundary conditions, the warmest point in the bar is always the
center. Thus, t is found by solving u(25, ¢) = 1 for t. Using one term in the series

expansion (24), we obtain
_ 2500

T =
71,2

In(80/7) = 820 sec.
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e \6
Consider the heat conduction problem
EXATPLE U, =4, 0<x <30, >0, (18)
1 W(O.1) =20,  u(30,n) =50, >0, (19)
ul(x,® =60 — 2x, 0 < x < 30. (20)

Find the steady-state temperature distribution and the boundary value problem that
determines the transient distribution.

The steady-state temperature satisfies v”(x) = 0 and the boundary conditions v(0) =
+20 and v(30) = 50. Thus v(x) = 20 + x. The transient distribution w(x, 7) satisfies
the heat conduction equation

w.\‘.x = wl ’ (2 | )

the homogeneous boundaiy conditions

w(0,1) =0,  w(30,1) =0, (22)

and the modified initial condition
- w(x,0) = 60 — 2x — (20 + x) = 40 — 3x. (23)
Note that this & skaudlacd gro8€evd  with f(x) =40 — 3x, @’ = |, and

L =30." , L . .

Figure 10.6.1 shows a plot of the initial temperature distribution 60 — 2x, the final
temperature distribution 20 + x, and the temperature at two intermediate times found
by solving Egs. (21) through (23). Note that the intermediate temperature satisfies the
boundary conditions (19) for any ¢t > 0. As t increases, the etfect of the boundary
conditions gradually moves from the ends of the bar toward its center.

FIGURE 10.6.1 Temperature distributions at several times for the heat conduction problem
of Example 1.
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EXAMPLE

V O CWw. o S ole”
Consider a vibrating string of length L = 30 that satisfies the wave equation
du, o=u,. 0<x <30, >0 (23)

RNY 1"
Assume that the ends of the string are fixed, and that the string is set in motion with no
initial velocity from the initial position

x/10, O0=<ux
(30 —x)/20. 10 < x

10.

30. 24)

=
=

w(x.0) = f(x) = {

Find the displacement u (. 1) of the string and describe its motion through one period.
The solution is given by Eq. (20) with @ = 2 and L = 30. that is.

x X 2nmt
u(v.r) = ch sin %\— cos ’;(7)[ . (25)

n=|

where ¢, is calculated from Eq. (22). Substituting from Eq. (24) into Eq. (22), we
obtain

2 0 . onmwx e+ 2 /30 30—~x | nmwx J 26)
c, = — = Sin —— dx 4+ — $IN ~—— dx. .
30y 10 30 30 Sy, 20 30
By evaluating the integrals in Eq. (26), we find that
9
€= S5 sin . n=1.2 .. 27)
nTmw- 3

The solution (25), (27) gives the displacement of the string at any point x at any time ¢.
The motion is periodic in time with period 30, so it is sufficient to analyze the solution
for0 <r < 30. ’

The best way to visualize the solution is by a computer animation showing the
dynamic behavior of the vibrating string. Here we indicate the motion of the string in
Figures 10.7.4, 10.7.5. and 10.7.6. Plots of u versus v for ¢ = 0.4,75, 11, and 15
are shown in Figure 10.7.4. Observe that the maximum initial displacement is positive
and occurs at x = 10, while at r = 15, a half period later, the maximum displacement
is negative and occurs at x = 20. The string then retraces its motion and returns to
its original configuration at t = 30. Figure 10.7.5 shows the behavior of the points
v = 10, 15. and 20 by plots of u versus 7 for these fixed values of x. The plots confirm
that the motion is indeed periodic with period 30. Observe also that each interior point

e ned peye
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FIGURE 10.7.5  Plots of u versus ¢ for fixed values of r for the strin
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