Fourier series and applications

1. - Write down the Fourier series for 2π-periodic function f defined by $f(t)=t \sin 2 t$ for $0<t<2 \pi$

- Write down the Fourier series for odd 2π-periodic function f defined by $f(t)=t \sin 2 t$ for $0<t<\pi$
- Write down the Fourier series for even 2π-periodic function f defined by $f(t)=t \sin 2 t$ for $0<t<\pi$

2. Write down the Fourier series for 2π-periodic functions $f_{1}(t)=\cos ^{3} t$, $f_{2}(t)=\cos 3 t$, and $f_{3}(t)=(\cos 2 t+\sin 2 t)^{2}$.

3 . Let 2π-periodic functions f_{1}, f_{2}, and f_{3} be defined by the relations

$$
f_{1}(t)=\left\{\begin{array}{ll}
t, & 0<t<\pi, \\
-t, & -\pi<t<0 .
\end{array} \quad f_{2}(t)=\left\{\begin{array}{ll}
\pi-t, & 0<t<\pi \\
\pi+t, & -\pi<t<0 .
\end{array} \quad f_{1}(t)= \begin{cases}t, & -\pi / 2<t<\pi / 2 \\
\pi-t, & \pi / 2<t<3 \pi / 2\end{cases}\right.\right.
$$

- Sketch the graphs of these functions and find their Fourier series;
- Can you obtain the Fourier series for f_{2} and f_{3} directly from the Fourier series for f_{1} ?

4. Find all cos-coefficients of the 2π-periodic function defined by $f(t)=t^{3}$ for $-\pi<t<\pi$.
5. Find sin- and cos- half-range expansion for the functions defined by the relations $f_{1}(t)=t^{3}$ for $0<t<\pi, f_{2}(t)=\cos t$ for $0<t<\pi$.
6. Write down the general formula for Fourier series and their coefficients for functions with period 2 .
7. Let f be a function of period 2 with $f(t)=t^{2}$ if $0<t<2$.

- plot the graph of f;
- find the Fourier series for f;
- find the sums of this series at the points $t=0$ and at $t=1$;
- prove the following relations:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{6} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} \\
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{\pi^{2}}{8}
\end{gathered}
$$

8. - Write down the general formula for complex Fourier series and their coefficients for functions with period 2 .

- Find the complex Fourier series for the function $f(t)=e^{t}$ on the interval $[-1,1]$

9. Find the temperature $u(x, t)$ at any time in a metal rod 50 cm long, insulated on the sides, which initially has a uniform temperature $20^{\circ} \mathrm{C}$ throughout and whose ends are maintained at $0^{\circ} C$ for all $t>0$.
10. (a bit more complicated) Solve the heat conduction problem:

$$
\begin{gathered}
u_{x x}=u_{t}, \quad 0<x<30, \quad t>0 \\
u(0, t)=0, \quad u(30, t)=20, \quad t>0 \\
u(x, 0)=60-2 x, \quad 0<x<30
\end{gathered}
$$

11. Consider a vibrating string of length $L=30$ that satisfies the wave equation

$$
4 u_{x x}=u_{t t}, \quad 0<x<30, \quad t>0
$$

Assume that the ends of string are fixed and that the string is set in motion with no initial velocity from the initial position

$$
u(x, 0)=f(x)= \begin{cases}x / 10, & 0<x<10 \\ (30-x / 20), & 10<x<30\end{cases}
$$

Find the displacement $u(x, t)$ of the string and describe its motion.

