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EXAMPLE 'i’li".B Determine #{5 — 3t + 4sin 2t —

6e*'}.

Solution Using the results given in (11.4)-(11.7),

A

1

L{5}) = -2,, Re(s) > 0 Lt} = = Re(s) > 0
F{sin2t} = 2 Re(s) > 0 Fle*} = L Re(s) > 4
s - Sz -+ 4 s - g 4’

so, by the linearity property,

F{5— 3t + 4sin2t — 6e*'} = L{5} — 3.L{t} + 4L {sin2t} — 6.L{e*}
5 3 8 6

= — — —— 4
; sz+s7‘+4 p—t Re(s) > max {0,4}
5 3 8 6

. R L A 4
s 52+52+4 s—4 els) >

EXAMPLE11.10 Determine Fle ' sin 2t}
Solution From the result (11.7),
in2t} = F(s) = >0
F{sin 2¢} (s) Taw Re(s) > 0

so, by the first shift theorem,

ZLle”¥sin 2t} = F(s + 3) = [F(s)];=543, Re(s)>0—3
that is,
Ple ¥sin2t} = 2 = 2 Re(s) > —3
(s+32+4 s>+ 6s+ 13

The function e”*sin2¢ in Example 11.10 is a member of a general class of
functions called damped sinusoids. These play an important role in the study of
engmeermg systems, particularly in the analysis of vibrations. «
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EXAMPLE 11.12 Determine & {t?e'}.

Solution From the result (11.6),

Pe'} = F(s) = ;——i—? Re(s) > 1

ﬁ ?? s0, by the derivative theorem,

d*F d? 1

d 1
= (””d_s<(s - 1>2>

2

= m, RC(S) > 1

5\)
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EXAMPLE 1117 Find

1 s+ 1
<+ A Z {sz(s2 + 9)}

Solution Resolving (s + 1)/s%(s* + 9) into partial fractions gives

s+ 1 __%_*‘é s+ 1
22 +9 s s Cs2+9
1 1
S-S TO UL 3
s 2 0P 437 TS24 32

Using the results in Figure 11.5, together with the linearity property, we have

s+ 1 ,
g—x{m}=%+ét-écos3t~%sm3t

EXAMPLE 11.20 Find
g*l{ s+ 7
4+ 25+ 5

s+7 s+ 7 s+ 1 2

Solution

P2+ G+1P44 G+DP14 4P ia
= L

- e l:_.._.f____jl -+ 3 2
SZ + 22 s=s5+1 SZ + 22 s—=s+1

Since s/(s* + 2%) = £{cos 2t} and 2/(s* + 2?) = ¥{sin 2¢}, the shift theorem gives

. s+ 7
£ 1{m}=e"'cos2t+3e"'8in2t
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EXAMPLE 4.3 e Usethelaplace transform to solve the initial value problem

y' 42y +2y =cos2t with y(0) =0 and V() =1

A A

We compute that

LG +2y +2y) = $2Y (s) — sy(0) — ' (0) + 2sY (s) — y(0) +2Y ().

and s
s2+4

Setting these two expressions equal and substituting the initial conditions, we get

L(cos2t) =

N
2 — o e
(42 +DYE) ~ 1= 5

or

1 s

Y(s) = .
O = T it s+ 2+ 4)

(4.4)

The inverse of the Laplace transform of the first term on the right can be com-
puted easily, so let’s deal with the second term. Since 242 +2=(+ D?+1
cannot be factored, the partial fractions decomposition of this term has the form

s _ As + B Cs+D
T+t +4) 2425 +2 24

(4.5)

If we combine the terms on the right of (4.5) and multiply it out completely, we find
that the numerators are

s=(A+C)s®+ (B+2C+ D)s?® + (4A +2C + 2D)s + (4B +2D).
Equating the coefficients of the powers, we get four equations:

A+ C=0,
B+2C+ D=0,
4A +2C +2D =1,

4B + 2D =0.

Solving this system, we get A = 1/10, B = —1/5,C = —1/10, and D = 2/5.
Thus the second term on the right in (4.4) is

1 s—2 1 s—4

10s2+2s+2 105244

and (4.4) becomes

Ser  namk  pos&
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V)= p 1 _5-2 154
ST+254+2 105242540 10s24+4°

To better match the entries in Table 1, w

€ complete the square to cet 52 +2
= (s + 1)® + 1 and then rewrite the above k ) o

equation as

1
Yeys—o L sH1
C+D2+1 106 F121]

_3 1 I s 2 2
0G4+ D241 1052+4+Es2+4'

We can read the inverse Laplace transforms of the sy i
S ds dir .
to find that mmands directly from Table |

- I 3
YO =e sint 4+ —e e D etging, L 2
10 ©os! ¢ st 10 00521+]65m2r

. _
m {e ’(c‘ost+7sint) + 2sin 2¢ ~cos2f}.

EXAMPLE 4.7 o Usethe Laplace transform to compute the solution to the initial value problem

x"(t) = 2x'(t) = 3x(t) = ¢ with x(3)=1 and x'(3) = 0.
Define
y(t) = x(t + 3).
Then y'() = x'(t +3) and y"(£) = x"(t + 3), so the initial value problem becomes
Y1) = 2y'(6) = 3y(r) = XD = 562 with y(0) =1, and y'(0)=0.

Taking the Laplace transform of the left-hand side of the differential equation,
and using Proposition 2.4 and the initial conditions, we obtain

LT =2y =3y} = (s2Y () = ¥'(0) — 59(0)) — 2 (s Y (5) — y(0)) — 37 (s)
= (s =25 =Y (s) — s +2.
Since L(e?) = 1 /(s — 2), the differential equation is transformed into

1

(52 =25 =Y (s) =5 +2 = b
, s —2

We can factor s — 25 — 3 = (s — 3)(s + 1), so we have

_ s =2 N e®

=3+ 1) =D =3+ 1)

To find y, we use partial fractions in the usual manner to obtain

Y(s)

eS+1 1 e 1 S+9 1
4 53 3s5~-2 12 s+1°

Taking the inverse Laplace transform using Table 1, we get

6 6 6
€ +1€3r_f_€2r+e +9 —t

Y =—; 3 2 ¢
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EXAMPLE 1126 - Solve for t = 0 the simultaneous first-order differential equations

dx dy
A = ! 11.20
T + o +5x +3y=¢ ( )
2 AN
dx dy
p b = 11.21
gttty 3 (11.21)

subject to the initial conditions x =2 and y =1 at ¢t = 0.

Solution Taking Laplace transforms in (11.20) and (11.21) gives

1

sX(s) — x(0) + sY(s) — y(0) + 5X(s) + 3Y(s) = o

2[sX(s) — x(0)] + sY(s) — y(0) + X(s) + Y(s) = %

Rearranging and in‘corporating the given initial conditions x(0) = 2 and y(0) =1

leads to
1 3s+4
PSR S 11.22
(s + 5)X(s) + (s + 3)Y(s) 3+s+1 o ( )
Q25 + DX(s) + (s + ) Y(s) = 5 + % _s+3 (11.23)

Hence, by taking Laplace transforms, the pair of simultaneous differential equations
(11.20) and (11.21) in x(t) and y(t) has been transformed into a pair of simultaneous
algebraic equations (11.22) and (11.23) in the transformed variables X(s) and Y(s).
These algebraic equations may now be solved simultaneously for X(s) and Y(s)
using standard algebraic techniques.

Solving first for X(s) gives

257414549

X = 5T 6= 0

Resolving into partial fractions,

11 25
3

X(s)= -2 —S_4

[Z IR N ]1%)

s—1

-+
[

N

e waxt R=&R
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which on inversion gives

o

x()=—3—%e 2+ Fe (t=20) (11.24)

Likewise, solving for Y(s) gives

_53—22s2—39s—~ 15

YO = T D6+ 26 = 1)

Resolving into partial fractions,

1

Nl

Y(s) =~ +

1
F 2 z
s s4+1 s+2 s

which on inversion gives

p)y = +le 4 e 2P (t20)

Thus the solution to the given pair of simultaneous differential equations is

X)) = —3— e + 2o

I t>0
Yy =5 +3e + 5 e — 2—25-6} (t>9)

Note: When solving a pair of first-order simultaneous differential equations such
as (11.20) and (11.21), an alternative approach to obtaining the value of y(t) having
obtained x(t) is to use (11.20) and (11.21) directly.

Eliminating dy/dt from (11.20) and (11.21) gives

d
2y=~£—4x—-3+e”‘

Substituting the solution obtained in (11.24) for x(¢) gives
2y=(e 2+ ) —4(-3— e H+F)e ~3+c7
leading as before to the solution
y=% et a He - Fe

A further alternative is to express (11.22) and (11.23) in matrix form and solve for
X(s) and Y(s) using Gaussian elimination.

In principle, the same procedure as used in Example 11.26 can be employed
to solve a pair of higher-order simultaneous differential equations or a larger
system of differential equations involving more unknowns. However, the algebra
involved can become quite complicated, and matrix methods are usually preferred.
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EXAMPLE 11.28 In the parallel network of Figure 11.9 there is no current flowing in either loop
prior to closing the switch at time ¢ = 0. Deduce the currents i,(t) and i,(t) flowing
in the loops at time .

Ry=20Q  L;=05H L,=1H
) p— NN, &
: . 2
t=0 i +11
R,=8Q Ry =10Q

(1) = 200V

Figure 11.9 Parallel circuit of Example 11.28.

Solution Applying KirchhofP’s first law to node X gives
=i, +1i,
Applying Kirchhoff's second law to each of the two loops in turn gives
d
R, +1i,)+ L‘_d—t(il +1,) + Ryi; = 200
di,

L3> + Riy = Ry = 0

%62. MS( N
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Substituting the given values for the resistances and inductances gives

& 4
Tj% *%172 + 56i, + 40i, = 400
(11.26)

g
—d'—;—gi1 +10i, = 0

Taking Laplace transforms and incorporating the initial conditions 0)=1,0)=0
leads to the transformed equations

400

(54 SOL() + (s + 40)1,(5) = =2 (11.27)
—81,(s) + (s + 10),(s) = 0 (11.28)
Hence
3200 3200

1,(s) = = .
)= T T 880) (s + 59.1)(s + 14.9)
Resolving into partial fractions gives

Lo 364, 122 4.86
=t 9T s T 149

which, on taking inverse transforms, leads to
I(t) = 3.64 + 1.22¢ 7391 _ 486~ 14.9
From (11.26),

o di
i(t) = g—(w:z + -(-1?2>
that is,

Ij(t) = 4.55 — 7.49e™5911 4 ) gge~14.9

Note that as t— oo, the currents i;(t) and i,(t) approach the constant values 4.55
and 3.64 A respectively. (Note that 1(0) = i,(0) + i,(0) # 0 due to rounding errors
in the calculation.)




EXAMPLE 11.30  The mass of the mass—spring—damper system of Figure 11.12(a) is subjegted to
an externally applied periodic force F(f) = 4sinwt at time t = 0. Determine the
resulting displacement x(t) of the mass at time ¢, given that x(0) = x(0) = 0, for

® L the two cases
(a) w=2 b) w=75

In the case w = 5, what would happen to the response if the damper were missing?

\() =Kx(t)  Fyr) = Bigh)
K=25 B=6

l,-._ M=1 IF(r)=4sin wt / lp(,) 4 sin wt

@ (b)

Figure 11.12 Mass—spring—damper system of Example 11.30.

Solution As indicated in Figure 11.12(b), the forces acting on the mass M are the applied
forces F(t) and the restoring forces F, and F, due to the spring and damper
respectively. Thus, by Newton’s law,

M() = F(t) — F,(t) — F,(t)
Since M = 1, F(t) = 4sinwt, F(t) = Kx(t) = 25x(t) and F,(t) = Bx(t) = 6x(t), this
gives

X(t) + 6x(t) + 25x(t) = 4 sin wt (11.31)

as the differential equation representing the motion of the system.
Taking Laplace transforms throughout in (11.31) gives

¥e))

(s* + 65 + 25)X(s) = [sx(0) + x(0)] + 6x(0) + e

where X(s) is the transform of x(z). Incorporating the given initial conditions
x(0) = x(0) = 0 leads to

_ 4o
(5?4 0))(s? + 65+ 25)

X(s) (11.32)

In case (a), with @ = 2, (11.32) gives

8
T (s + 4)(s? + 65 + 25)

which, on resolving into partial fractions, leads to

X(s)

_ds+ 14 8s + 20

X(s) = -2 2
O =t T e 508
. —dst14 , 8(s+3) -4

— 19% + 153

s*+4

s+ 3)2 + 16 See ek Y S
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Taking inverse Laplace transforms gives the required response

x(t) = 1o3(7sin2t — 4cos 2t) + '1%‘56-3' (8 cos 4t — sin 41) (11.33)
In case (b), with @ =5, (11.32) gives
20
X(s) = A e 34
()= (T 1 25)(s® + 65 + 29) (11.34)
that is,
- 2s +3)+ 6
X(s) = 155 L LT ST
O =33 25 TS+ 3+ 16
which, on taking inverse Laplace transforms, gives the required response
x(f) = — Z5cos 5t + 15¢ (2cos 4t + 35in 4¢) (11.35)

If the damping term were missing then (11.34) would become
20

(s> + 257

By Theorem 11.3,

X(s) = (11.36)

P{tcos5t} = -—ggy{cos 5t} = ~ad—s<-——§—~—~>

s2 4+ 25
that is,
i 262 i 50
Pl1008 S = e e = o — e
{teosSt} = — 555 YV T 1257 s +25 (s+25°
. 50
= { #{sin 5t} T 25

Thus, by the linearity property (11.10),

. 50
g{%SIH 5t — tcos St} = m

so that taking inverse Laplace transforms in (11.36) gives the response as
x(t) = 25 (sin 5t — 5t cos 51)

Because of the term ¢ cos 5t, the response x(t) is unbounded as t— 0. This arises
because in this case the applied force F(t) = 4sin 5t is in resonance with the system
(that is, the vibrating mass), whose natural oscillating frequency is 5/27 Hz, equal
to that of the applied force. Even in the presence of damping, the amplitude of
the system response is maximized when the applied force is approaching resonance
with the system. (This is left as an exercise for the reader.) In the absence of damping
we have the limiting case of pure resonance, leading to an unbounded response.
As noted in Chapter 10, Section 10.10.3, resonance is of practical importance, since,
for example, it can lead to large and strong structures collapsing under what
appears to be a relatively small force.




