Numerical formulas

- Let $p(x)$ be the polynomial of degree $\leq n$ which coincides with $f(x)$ at points
$x_{i}, i=0,1, \ldots, n$. Under the assumption that x and all the nodes x_{i} lie in the interval $[a, b]$, we have

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

If the nodes are evenly spaced, including end points, and $\left|f^{(n+1)}(x)\right| \leq M$, we have

$$
|f(x)-p(x)| \leq \frac{1}{4(n+1)} M\left(\frac{b-a}{n}\right)^{n+1}
$$

- Numerical differentiation:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{h}(f(x+h)-f(x))-\frac{h}{2} f^{\prime \prime}(\xi) \\
& f^{\prime}(x)=\frac{1}{h}(f(x)-f(x-h))+\frac{h}{2} f^{\prime \prime}(\xi) \\
& f^{\prime}(x)=\frac{1}{2 h}(f(x+h)-f(x-h))-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi) \\
& f^{\prime \prime}(x)=\frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))-\frac{h^{2}}{12} f^{(4)}(\xi)
\end{aligned}
$$

- Newton's method for solving the system of equations $\mathbf{f}(\mathbf{x})=\mathbf{0}$ is given by the scheme

$$
\begin{aligned}
\mathbf{J}^{(k)} \cdot \Delta \mathbf{x}^{(k)} & =-\mathbf{f}\left(\mathbf{x}^{(k)}\right) \\
\mathbf{x}^{(k+1)} & =\mathbf{x}^{(k)}+\Delta \mathbf{x}^{(k)}
\end{aligned}
$$

- Iteration methods for solving systems of linear equations

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1,2, \ldots, n \\
& \text { Jacobi : } \quad x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) \\
& \text { Gauss-Seidel : } \quad x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right)
\end{aligned}
$$

- Heun's method for solving $\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y})$:

$$
\begin{aligned}
\mathbf{K}_{1} & =h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) \\
\mathbf{K}_{2} & =h \mathbf{f}\left(x_{n}+h, \mathbf{y}_{n}+\mathbf{K}_{1}\right) \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+\frac{1}{2}\left(\mathbf{K}_{1}+\mathbf{K}_{2}\right)
\end{aligned}
$$

See formulas in Rottmann as well.

