
Newton’s method for systems
of non-linear equations

Bård Skaflestad

October 3, 2006

Multi-variate Taylor expansions
We wish to develop a generalisation of Taylor series expansions for multi-
variate real functions, i.e. real functions of more than one real variable.

The bi-variate case
To this end, let f : R2 → R be a sufficiently differentiable function of two real
variables. We define the auxillary single-variable functions uy(x) and vx(y) by
the relations

uy(x) = f(x, y), y fixed
vx(y) = f(x, y), x fixed.

We then observe that dm

dxm uy(x) = ∂m

∂xm f(x, y) and dm

dym vx(y) = ∂m

∂ym f(x, y) for
all m ≥ 0 provided the partial derivatives exist and are well defined. Conse-
quently

uy(x + h1) = uy(x) + h1u
′
y(x) +

h2
1

2
u′′y(ξ)

= f(x, y) + h1
∂f

∂x
(x, y) +

h2
1

2
∂2f

∂x2
(ξ, y)

and

vx(y + h2) = vx(y) + h2v
′
x(y) +

h2
2

2
v′′x(η)

= f(x, y) + h2
∂f

∂y
(x, y) +

h2
2

2
∂2f

∂y2
(x, η).

1

Here, ξ is a point between x and x+h1 and η is a point between y and y +h2.
In the remainder of this exposition we will assume that the perturbations |h1|
and |h2| are moderately sized lest the results be overly inaccurate.

We now wish to express the function value f(x + h1, y + h2) in terms of the
value of f and its (partial) derivatives at (x, y). This will lead to the bi-variate
Taylor expansion of f . Doing Taylor expansion in the y direction first whilst
keeping x fixed we find that

f(x + h1, y + h2) = vx+h1(y + h2)

= vx+h1(y) + h2
d
dy

vx+h1(y) +
h2

2

2
d2

dy2
vx+h1(η).

Rewriting this in terms of the bi-variate function f we then get

f(x + h1, y + h2) = f(x + h1, y) + h2
∂

∂y
f(x + h1, y) +

h2
2

2
∂2

∂y2
f(x + h1, η).

Differentiating now each term with respect to x we find

f(x + h1, y + h2) = f(x, y) + h1
∂

∂x
f(x, y) +

h2
1

2
∂2

∂x2
f(ξ, y)+

h2
∂

∂y

(
f(x, y) + h1

∂

∂x
f(x, y) +

h2
1

2
∂2

∂x2
f(ξ, y)

)
+

h2
2

2
∂2

∂y2

(
f(x, η) + h1

∂

∂x
f(x, y) +

h2
1

2
∂2

∂x2
f(ξ, η)

)
.

Collecting terms in increasing powers of h1 and h2, we then see

f(x + h1, y + h2) = f(x, y) + h1
∂f

∂x
(x, y) + h2

∂f

∂y
(x, y) +O(h2). (1)

Here, h =
√

h2
1 + h2

2 and O(h2) signifies a function g(x) such that

lim
h→0

g(h)
h2

= C, 0 < |C| < ∞.

Note though, that the simplification (1) is a direct result of disregarding some
of the information included in the “higher order terms”.

Generalisation to several variables
The bi-variate Taylor expansion (1) may be further generalised to multi-variate
functions, that is, functions of n ≥ 2 variables, f(x1, x2, . . . , xn). Denoting by

x =
[
x1, x2, . . . , xn

]T

2

a vector of n real components, we may make the notation for multi-variate
functions more compact as

f(x1, x2, . . . , xn) ≡ f(x).

We underscore though that this is merely a compact notation to signify that
the function f depends on more than one scalar variable. Suppose now that
h =

[
h1, h2, . . . , hn

]T is a vector of (presumably small) ‘displacements’. Then

f(x + h) = f(x) +
n∑

j=1

hj
∂f

∂xj
(x) +O(h2), (2)

in which h =
√∑n

j=1 h2
j , is the generalisation of (1) to functions of n scalar

variables. We remark in particular that all of the partial derivatives ∂f/∂xj

are evaluated at the point x. The above is certainly not a proof, but merely a
statement of the general result.

Newton’s method for systems of non-linear
equations
We seek a method for the resolution of the system of n non-linear equations
in n variables given by

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0.

(3)

In other words, n non-linear equations each depending on n variables must be
satisfied simultaneously. We will assume throughout the derivation that some
point r =

[
r1, r2, . . . , rn]T ∈ Rn exists for which all the equations are satisfied.

Our aim now is to define a sequence of vectors xm ∈ Rn with m ≥ 0 and
hopefully such that

lim
m→∞

xm = r.

To this end, and to simplify the notation even further, define the vector valued
function

f(x) =


f1(x)
f2(x)

...
fn(x)

 =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)


3

The system of non-linear equations (3) may then be compactly written as

f(x) = 0

in which 0 denotes the zero vector, 0 =
[
0, 0, . . . , 0

]T ∈ Rn.
Now suppose xm ≈ r, and define h = r − xm. We wish to derive condi-

tions on the vector h in order that f(r) = 0. Using the multi-variate Taylor
expansion (2) in each of the n originial equations (3) we then get

0 = f(r) =


f1(xm + h)

f2(xm + h)
...

fn(xm + h)

 =


f1(xm) +

∑n
j=1 hj

∂f1
∂xj

(xm) +O(h2)

f2(xm) +
∑n

j=1 hj
∂f2
∂xj

(xm) +O(h2)
...

fn(xm) +
∑n

j=1 hj
∂fn

∂xj
(xm) +O(h2)

. (4)

We now define the n× n Jacobian matrix Df(x) as

Df(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
. . .

...
∂fn

∂x1
(x) ∂fn

∂x2
(x) · · · ∂fn

∂xn
(x)

 ,

or more succinctly, as
(
Df(x)

)
ij

= ∂fi

∂xj
(x) for all i, j = 1, 2, . . . , n. Recalling

briefly that the matrix-vector product w = Av is defined component-wise as

wi =
n∑

j=1

aijvj

for all i = 1, 2, . . . , n (when A ∈ Rn×n and v,w ∈ Rn), we may rewrite (4) as

0 = f(xm) + Df(xm)h + Rm

in which the residual Rm ∈ Rn is a vector whose components are all O(h2).
Assuming now that the Jacobian matrix Df(xm) is regular (i.e. invertible),

disregarding the residual Rm and defining the vector hm as the (unique) so-
lution to the n× n linear system

0 = f(xm) + Df(xm)hm ⇔ Df(xm)hm = −f(xm),

4

we arrive at the next term in the sequence {xm} as

xm+1 = xm + hm.

This, then, fully defines Newton’s method for systems of non-linear equations
as

1. Choose some initial point x0.

2. For all m = 0, 1, 2, . . . until convergence

a) Compute the Jacobian matrix J = Df(xm).
b) Solve the linear system Jhm = −f(xm) with respect to hm.
c) Set xm+1 = xm + hm.

A few remarks on the method are in order. Most importantly we have to resolve
an n × n linear system on each iteration of the method. Moreover, both the
matrix and the right hand side in general vary as functions of x, meaning we
have to re-evaluate these quantities on each iteration too. This makes the
Newton–Raphson method fairly expensive, especially for large systems (i.e.
n � 1).

Finally, note the similarity to the original (scalar) Newton method

xm+1 = xm − f(xm)
f ′(xm)

, m = 0, 1, 2, . . . (5)

Defining hm as the solution to the simple, linear equation

f ′(xm) hm = −f(xm)

for all m = 0, 1, 2, . . . , equation (5) is exactly xm+1 = xm + hm for all m ≥ 0.
We also notice that the Jacobian matrix Df(xm) plays the rôle of the derivative
in the case of systems of non-linear equations.

Example
We consider the system of two equations given by

x1 − x2 + 1 = 0

x2
1 + x2

2 − 4 = 0.
(6)

Using vector notation this is f(x) = 0 in which x = [x1, x2]T and the vector
function f(x) is given by f(x) = [x1−x2 +1, x2

1 +x2
2−4]T. Graphically, solving

5

1
−2

−2

−1

−1

2

1

2

Figure 1: Graphical interpretation of the system (6).

this system corresponds to constructing the points at which the line x2 = x1+1
intersects the circle x2

1+x2
2 = 22. The situation is shown in Figure 1. We notice

from Figure 1 that the system has a solution near the point (x1, x2) = (0.8, 1.8).
We will demonstrate how Newton’s method converges to this solution.

The Jacobian matrix of the system (6) can be computed exactly, the result
being

Df(x) =

 1 −1

2x1 2x2

 .

Note in particular that some of the matrix entries in this case are constant
while others depend on the values of x1 and x2. This is quite common in
practice.

Starting from x0 = [0.8, 1.8]T, we first compute the function f(x0) and the
Jacobian matrix Df(x0) as

f(x0) =
[

0
−0.12

]
, Df(x0) =

[
1 −1

1.6 3.6

]
.

Thus, the initial displacement vector h0 is the solution to the linear system[
1 −1

1.6 3.6

]
h0 = −f(x0) =

[
0

0.12

]
. (7)

6

It is very important to remember that the right hand side of the linear sys-
tem (7) is −f(x0) and not f(x0). In other words, the negative sign is entirely
essential to the success of the method. Solving the linear system (7) we find

h0 ≈
[
0.0230769
0.0230769

]
,

from which the next Newton iterate is

x1 = x0 + h0 =
[
0.8
1.8

]
+

[
0.0230769
0.0230769

]
=

[
0.8230769
1.8230769

]
.

To start the next Newton iteration, we compute the vector f(x1) and the
Jacobian matrix Df(x1) as

Df(x1) =
[
1.0000000 −1.0000000
1.6461538 3.6461538

]
, f(x1) =

[
0.0000000
0.0010651

]
.

The second displacement vector, h1, is then the solution to the linear system[
1.0000000 −1.0000000
1.6461538 3.6461538

]
h1 =

[
0.0000000

−0.0010651

]
︸ ︷︷ ︸

=−f(x1)

. (8)

We then find that

h1 =
[
−2.0125224 · 10−4

−2.0125224 · 10−4

]
, x2 = x1 + h1 =

[
0.8228757
1.8228757

]
.

Repeating this proces once more we find the final iterate

x3 =

0.82287565553230

1.82287565553230


which is correct to 16 decimal digits as you may check from the exact solutionx1

x2

 = r =

 1
2

(√
7− 1

)
1
2

(√
7 + 1

)
 .

Implementing Newton’s method in MATLAB
Solving all the linear systems needed in Newton’s method, not to mention ac-
tually computing the matrices and right hand sides in the first place, quickly

7

becomes quite tedious—especially if the number of Newton iterations required
for convergence is large. Fortunately, matlab expediently resolves linear sys-
tems numerically by means of the “matrix left division operator”, \.

If we assume the existence of two problem-dependent functions f and Df
which compute the values of f(x) and Df(x) respectively, the Newton method
reduces to the two statements

h = - Df(x) \ f(x)
x = x + h

These statements can in fact be written in a single line as

h = - Df(x) \ f(x), x = x + h

The Newton process leading to the solution of the system (6) may thus be
realised as

f = @(x) [x(1) - x(2) + 1; x(1)^2 + x(2)^2 - 4];
Df = @(x) [1, -1; 2*x(1), 2*x(2)];

x = [0.8; 1.8]; % initial value
h = - Df(x) \ f(x), x = x + h
h = - Df(x) \ f(x), x = x + h
h = - Df(x) \ f(x), x = x + h
h = - Df(x) \ f(x), x = x + h

and we observe that in the last step h = [0; 0] meaning convergence to the
exact solution in four steps when starting from

x0 =
[
0.8
1.8

]
.

8

