Newton's method for systems
of non-linear equations

Bard Skaflestad
October 3, 2006

Multi-variate Taylor expansions

We wish to develop a generalisation of Taylor series expansions for multi-
variate real functions, i.e. real functions of more than one real variable.

The bi-variate case

To this end, let f : R2 — R be a sufficiently differentiable function of two real
variables. We define the auxillary single-variable functions u, (z) and v, (y) by

the relations
uy(z) = f(z,y), y fixed
ve(y) = f(x,y), = fixed.

We then observe that d;cm uy(z) = d‘ri;; f(z,y) and d A e (y) = 2o f(x,y) for
all m > 0 provided the partial derivatives exist and are well dele/ned Conse-

quently
2

yla -+ ha) =y (2) + oy () + L €)
0 h? 92

and
2

h
vz (y + h2) = va(y) + havl(y) + ?2”“(7))

2 92
= fa) + hagl (o) + 25 L (o),

Here, ¢ is a point between z and x + hy and 7 is a point between y and y + ho.
In the remainder of this exposition we will assume that the perturbations |h;|
and |ho| are moderately sized lest the results be overly inaccurate.

We now wish to express the function value f(x + hy,y + h2) in terms of the
value of f and its (partial) derivatives at (x,y). This will lead to the bi-variate
Taylor expansion of f. Doing Taylor expansion in the y direction first whilst
keeping x fixed we find that

f(@+hi,y+ha) =vepn, (y+ h2)
d h2 d2
= Vgyn, (Y) + h2 vaw+h1 (y) + fdfynghl (n)-

Rewriting this in terms of the bi-variate function f we then get

2 92

flx+hi,y+ ho) :f(:c+h1,y)+h26%f(x+h1,y)+ h f(x+hi,n).

27
2 Oy?
Differentiating now each term with respect to x we find

2 92

hy
Flot by h) = F@y) 4 fe) + 00 pe)

B) h2 9
hzafy(f(%y)+h1%f(x,y)+§@
h2 o) h2 5

Collecting terms in increasing powers of h; and ho, we then see

2

f(&y)+

fx+hi,y+ha) = f(z,y) + h1g(l’7y) + h2g(9¢79) +0(h%). (1)

ox oy
Here, h = \/h? + h3 and O(h?) signifies a function g(z) such that

lim g(h) C,

Lim =5 0 <|C] < o0.

Note though, that the simplification (1) is a direct result of disregarding some
of the information included in the “higher order terms”.

Generalisation to several variables

The bi-variate Taylor expansion (1) may be further generalised to multi-variate
functions, that is, functions of n > 2 variables, f(z1,22,...,2,). Denoting by

X = [l‘l,ﬂjg,...,xn}T

2

a vector of n real components, we may make the notation for multi-variate
functions more compact as

flz1, 20, 2n) = f(x).

We underscore though that this is merely a compact notation to signify that
the function f depends on more than one scalar variable. Suppose now that

h= [hl, ha,y ..., hn}T is a vector of (presumably small) ‘displacements’. Then
f(x+h) = +§:ma x) + O(h?), (2)
in which h = 2?21 h2, is the generalisation of (1) to functions of n scalar

variables. We remark in particular that all of the partial derivatives 9f/0zx;
are evaluated at the point x. The above is certainly not a proof, but merely a
statement of the general result.

Newton’s method for systems of non-linear
equations

We seek a method for the resolution of the system of n non-linear equations
in n variables given by

fl(xlwaM"»)

0
f2(x17I27"'7) 0

(3)

fn(xl,xg, N ,J)n) =0.
In other words, n non-linear equations each depending on n variables must be
satisfied simultaneously. We will assume throughout the derivation that some
point r = [7"1, T2,...,7n]" € R™ exists for which all the equations are satisfied.
Our aim now is to define a sequence of vectors x,, € R™ with m > 0 and
hopefully such that

lim x,, =r.
m—00

To this end, and to simplify the notation even further, define the vector valued

function
f1(x) filzi,zo,. ..)

fa(x fo(zr,20,..., 2y
) - f): @1,22,..,20)

fn(x) fn(xth.w--;zn)
3

The system of non-linear equations (3) may then be compactly written as
f(x)=0

in which 0 denotes the zero vector, 0 = [O, 0,..., O]T e R™.

Now suppose x,, =~ r, and define h = r — x,,,. We wish to derive condi-
tions on the vector h in order that f(r) = 0. Using the multi-variate Taylor
expansion (2) in each of the n originial equations (3) we then get

f1(xm +h) fi(x)+Z] 1 Jg;{l(x) +O(h?)
< Of2 X 2

0t [P0 TIPSR Bl HOUR
fn(xXm +h) fn(xm) + Z?:l hj%(xm) +O(h?)

We now define the n x n Jacobian matrix Df(x) as

6 1 8 1 8 1
i S0 o)
%(x) %(x) ... 9fs (x)
Df(X) _ 60:1. 6&72. . Ba:n. ’
O fn Ofn Ofn
Sa(x) Sr(x) - Z(x)

or more succinctly, as (Df(x))ij = gfi() for all i,5 = 1,2,...,n. Recalling
briefly that the matrix-vector product w = Av is defined component-wise as

n
w; = E aijvj
J=1

foralli=1,2,...,n (when A € R"*" and v,w € R"), we may rewrite (4) as
0="f(x,)+ Df(x,) h+ Ry,

in which the residual R,,, € R™ is a vector whose components are all O(h?).

Assuming now that the Jacobian matrix Df(x,,) is regular (i.e. invertible),
disregarding the residual R,, and defining the vector h,, as the (unique) so-
lution to the n x n linear system

0 = f(x,n) + DE(%Xpn) h < DE(Xpn) My = —F(X1m),

we arrive at the next term in the sequence {x,,} as
Xmt1 = Xm + hyp.

This, then, fully defines Newton’s method for systems of non-linear equations
as

1. Choose some initial point xg.
2. For all m =0,1,2,... until convergence

a) Compute the Jacobian matrix J = Df(x,).
b) Solve the linear system Jh,, = —f(x,,) with respect to h,,.

¢) Set Xpi1 =X + hyp.

A few remarks on the method are in order. Most importantly we have to resolve
an n x n linear system on each iteration of the method. Moreover, both the
matrix and the right hand side in general vary as functions of x, meaning we
have to re-evaluate these quantities on each iteration too. This makes the
Newton—Raphson method fairly expensive, especially for large systems (i.e.
n>1).

Finally, note the similarity to the original (scalar) Newton method

f(@m)
f/(xm)7

Defining h.,, as the solution to the simple, linear equation
f/(xm) hon = = f(Tm)

for all m =0,1,2,..., equation (5) is exactly ;11 = @ + Ay for all m > 0.
We also notice that the Jacobian matrix Df(x,,) plays the role of the derivative
in the case of systems of non-linear equations.

m=0,1,2,... (5)

LTm+1 = Tm —

Example
We consider the system of two equations given by

T —2To+1=0

22422 —4=0.

(6)

Using vector notation this is f(x) = 0 in which x = [z, 23] and the vector
function f(x) is given by f(x) = [z; — 22+ 1,22 + 22 —4]T. Graphically, solving

5

Figure 1: Graphical interpretation of the system (6).

this system corresponds to constructing the points at which the line xo = 141
intersects the circle #2 +23 = 22. The situation is shown in Figure 1. We notice
from Figure 1 that the system has a solution near the point (z1,z2) = (0.8, 1.8).
We will demonstrate how Newton’s method converges to this solution.
The Jacobian matrix of the system (6) can be computed exactly, the result
being
1 -1
Df(x) =
2$1 21’2

Note in particular that some of the matrix entries in this case are constant
while others depend on the values of x; and x5. This is quite common in
practice.

Starting from xo = [0.8,1.8]T, we first compute the function f(xg) and the
Jacobian matrix Df(xo) as

f(x0) = [—0912} » DE(xo) = [1%6 ;(15] '

Thus, the initial displacement vector hg is the solution to the linear system

[1%6 ;é] ho = —F(x0) = [022} : (7)

6

It is very important to remember that the right hand side of the linear sys-
tem (7) is —f(xp) and not f(xg). In other words, the negative sign is entirely
essential to the success of the method. Solving the linear system (7) we find

L ~ [0:0230769
07 10.0230769]

from which the next Newton iterate is

0.8} {0.0230769] 3 {0.8230769}

X1 = Xo +ho = [1.8 0.0230769| — |1.8230769

To start the next Newton iteration, we compute the vector f(x;) and the
Jacobian matrix Df(x;) as

Df(x;) — 1.0000000 —1.0000000 F(x1) = 0.0000000
Y7 11.6461538 3.6461538| 1710.0010651 | °

The second displacement vector, hy, is then the solution to the linear system

1.0000000 —1.0000000 hy — 0.0000000 (8)
1.6461538 3.6461538| '~ [—0.0010651| "
|
=—f(x1)
We then find that

b _ [~20125224 10~ b - 08228757
1= 1 90125224 - 10~4| > X2 = X1 T = 14 9908757

Repeating this proces once more we find the final iterate

0.82287565553230
1.82287565553230

X3 =

which is correct to 16 decimal digits as you may check from the exact solution

(Vi-1)
(V7+1)

gl
=r =

ST SIS

€2

Implementing Newton’s method in MATLAB

Solving all the linear systems needed in Newton’s method, not to mention ac-
tually computing the matrices and right hand sides in the first place, quickly

7

becomes quite tedious—especially if the number of Newton iterations required
for convergence is large. Fortunately, MATLAB expediently resolves linear sys-
tems numerically by means of the “matrix left division operator”, \.

If we assume the existence of two problem-dependent functions f and Df
which compute the values of f(x) and Df(x) respectively, the Newton method
reduces to the two statements

h = - Df(x) \ £(x)
x=x+h

These statements can in fact be written in a single line as
h=-Df(x) \ f(x), x=x+h

The Newton process leading to the solution of the system (6) may thus be
realised as

f =00 [x(1) - x(2) +1; x(1)"2 + x(2)°2 - 4];
Df = @(x) [1, -1; 2*x(1), 2*xx(2)];

x = [0.8; 1.8]; % initial value

h =-Df(x) \ f(x), x=x+nh

h =-Df(x) \ f(x), x=x+h

h =-Df(x) \ f(x), x=x+h

h =-Df(x) \ fx), x=x+h

and we observe that in the last step h = [0; 0] meaning convergence to the
exact solution in four steps when starting from

0.8
X0= 18]

