Fra Kreyszig, avsnitt 5.1

7 Formelen \(\sin(u + v) = \sin u \cos v + \cos u \sin v \) gir her \(\sin(\omega t + \delta) = \sin \omega t \cos \delta + \cos \omega t \sin \delta \).
Av formlene 7 og 8 i tabell 5.1, Kreyszig s. 254, får vi da
\[
L\{\sin(\omega t + \delta)\} = \frac{\omega}{s^2 + \omega^2} \cos \delta + \frac{s}{s^2 + \omega^2} \sin \delta = \frac{\omega \cos \delta + s \sin \delta}{s^2 + \omega^2}.
\]

15 For \(0 \leq t \leq 1 \) er grafen til \(f(t) \) en rett linje med stigningstall \(-\frac{1}{2}\) som går gjennom punktet \((0, 1)\). Den har da ligning \(y - 1 = -\frac{1}{2} (t - 0) \), dvs. \(y = 1 - \frac{1}{2} t \). Følgelig er \(f(t) \) gitt ved
\[
f(t) = \begin{cases}
1 - \frac{1}{2} t & \text{for } 0 \leq t \leq 1, \\
0 & \text{for } t > 1.
\end{cases}
\]

Da kan vi finne den Laplacetransformerte ved integrasjon:
\[
L(f) = \int_{0}^{\infty} e^{-st} f(t) \, dt = \int_{0}^{1} e^{-st} (1 - \frac{1}{2} t) \, dt \\
= -\left. \frac{1}{s} e^{-st} (1 - \frac{1}{2} t) \right|_{t=0}^{1} - \int_{0}^{1} \frac{e^{-s} - \frac{1}{2}}{s} \, dt \\
= \frac{1}{s} - \frac{e^{-s}}{2s} + \frac{e^{-s} - 1}{2s^2},
\]
der vi brukte delvis integrasjon \(\int u \, dv = uv - \int v \, du \) med \(u = 1 - \frac{1}{2} t \) og \(dv = e^{-st} \, dt \).

20 Vi skal finne den inverse Laplacetransformasjonen til funksjonen
\[
F(s) = \frac{s - 4}{s^2 - 4}.
\]
Omformer uttrykket
\[
F(s) = \frac{s}{s^2 - 4} - \frac{4}{s^2 - 4} = \frac{s}{s^2 - 2^2} - \frac{2}{s^2 - 2^2},
\]
og en sammenligning med tabell 5.1 gir da at
\[
f(t) = L^{-1}\{F(s)\}(t) = \cosh 2t - 2 \sinh 2t
\]

29 Vi skal finne Laplacetransformasjonen til funksjonen gitt ved
\[
f(t) = t^2 e^{-3t} = g(t)e^{at}, \text{ der } g(t) = t^2, a = -3.
\]
Ved første skifteteorem blir
\[
F(s) = \frac{2}{(s - a)^3} = \frac{2}{(s + 3)^3},
\]
ettersom \(L(t^2) = 2/s^3 \) (jfr. tabell 5.1).
Vi skal finne
\[\mathcal{L}\{\sinh t \cos t\} = \mathcal{L}\{\frac{1}{2}(e^t - e^{-t}) \cos t\} \]
\[= \frac{1}{2} \mathcal{L}\{e^t \cos t\} - \frac{1}{2} \mathcal{L}\{e^{-t} \cos t\} \]

Ved første skiftteorem:
\[\mathcal{L}\{\sinh t \cos t\} = \frac{1}{2} \left(\frac{s - 1}{(s - 1)^2 + 1} - \frac{s + 1}{(s + 1)^2 + 1} \right) \]
som med litt algebraakrobatikk lar seg omforme til
\[\frac{s^2 - 2}{s^4 + 4} \]

Vi omskriver telleren slik at hele brøken blir en funksjon av \((s + \frac{1}{2})\):
\[\frac{s}{(s + \frac{1}{2})^2 + 1} = \frac{(s + \frac{1}{2}) - \frac{1}{2}}{(s + \frac{1}{2})^2 + 1} \]
Da kan vi bruke tabell 5.1, Kreyszig s. 254, til å finne den inverse Laplacetransformerte. Ved hjelp av formlene 11 og 12 (med \(a = -1/2\) og \(\omega = 1\)) får vi
\[\mathcal{L}^{-1}\left\{ \left(\frac{s + \frac{1}{2}}{s^2 + 1}\right) \right\} = \frac{1}{2} \left(\frac{s + 1}{(s + \frac{1}{2})^2 + 1} - \frac{1}{2} \left(\frac{s + 1}{(s + \frac{1}{2})^2 + 1} \right) \right) e^{-t/2} \cos t - \frac{1}{2} e^{-t/2} \sin t. \]

Alternativt kan vi bruke transformasjonsregelen \(\mathcal{L}^{-1}\{F(s - a)\} = e^{at} f(t)\) (første forskyvningssregel/skiftteorem, Kreyszig 5.1 teorem 2) med \(a = -1/2\) for å finne den inverse Laplacetransformerte. Her er
\[F(s + \frac{1}{2}) = \frac{(s + \frac{1}{2}) - \frac{1}{2}}{(s + \frac{1}{2})^2 + 1} \quad \text{og følgelig} \quad F(s) = \frac{s - \frac{1}{2}}{s^2 + 1}, \]
\[f(t) = \mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\left\{ \frac{s}{s^2 + 1} - \frac{1}{2} \frac{1}{s^2 + 1} \right\} = \cos t - \frac{1}{2} \sin t \]
siden \(\mathcal{L}^{-1}\{s/(s^2 + 1)\} = \cos t\) og \(\mathcal{L}^{-1}\{1/(s^2 + 1)\} = \sin t\). Dermed er
\[\mathcal{L}^{-1}\left\{ \frac{s}{(s + \frac{1}{2})^2 + 1} \right\} = \mathcal{L}^{-1}\{F(s + \frac{1}{2})\} = e^{-t/2} f(t) = e^{-t/2} \left(\cos t - \frac{1}{2} \sin t \right). \]

Fra Kreyszig, avsnitt 5.2

Vi skal løse
\[y'' - y' - 2y = 0 \]
med initialbetingelser
\[y(0) = 8, y'(0) = 7 \]
ved å benytte Laplacetransformen. La
\[Y \equiv \mathcal{L}\{y\}. \]
Da har vi videre at
\[L\{y'\} = sY - y(0) = sY - 8 \]
\[L\{y''\} = s^2Y - 8s - 7. \]

Med dette transformerer vi ligningen vi startet med:
\[s^2Y - 8s - 7 - (sY - 8) - 2Y = 0 \] (1)
\[Y = \frac{8s - 1}{s^2 - s - 2} = \frac{8s - 1}{(s + 1)(s - 2)} \] (2)

Delbrøkoppalter \(Y(s)\) og finner at:
\[Y = \frac{3}{s + 1} + \frac{5}{s - 2}. \]

Vi kan nå enkelt inverstransformere \(Y\) ved å bruke første skiftteorem og at \(L\{1/s\} = 1\) og finner at:
\[y(t) = 3e^{-t} + 5e^{2t} \]

Her bruker vi tabell 5.1 (Kreyszig s. 254) og varianten (9) av Teorem 3, Kreyszig s. 262 (Integralregelen), 2 ganger for å finne den inverse Laplacetransformerte:
\[L^{-1}\left\{\frac{9(s + 1)}{s^2 + 9}\right\} = L^{-1}\left\{\frac{9s}{s^2 + 3^2} + \frac{3 \cdot 3}{s^2 + 3^2}\right\} = 9 \cos 3t + 3 \sin 3t \] (Tabell 5.1)
\[L^{-1}\left\{\frac{1}{s} \left(\frac{9(s + 1)}{s^2 + 9}\right)\right\} = \int_0^t (9 \cos 3\tau + 3 \sin 3\tau) \, d\tau \] (Teorem 3)
\[= \left[3 \sin 3\tau - \cos 3\tau\right]_0^t = 3 \sin 3t - \cos 3t + 1 \]
\[L^{-1}\left\{\frac{s + 1}{s^2 + 9}\right\} = L^{-1}\left\{\frac{1}{s} \left(\frac{9(s + 1)}{s(s^2 + 9)}\right)\right\} \]
\[= \int_0^t (3 \sin 3\tau - \cos 3\tau + 1) \, d\tau \] (Teorem 3)
\[= \left[- \cos 3\tau - \frac{1}{3} \sin 3\tau + \tau\right]_0^t = 1 + t - \cos 3t - \frac{1}{3} \sin 3t \]

Vi kunne også brukt delbrøkoppspalting og deretter tabell 5.1 for å finne den inverse Laplacetransformerte her. Men i oppgaveteksten står det at vi skal bruke Integralregelen.