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TMA4130, Fall 2007, Solutions

Problem 1 Find function y(t), t ≥ 0 such that y(0) = 0 and
∫ t

0

y′(u)y(t− u)du = t2, t > 0. (1)

Solution. Let Y (s) = Ly(s). Since y(0) = 0 we obtain Ly′(s) = sY (s). The left-hand side of the
equation (1) is the convolution of y and y′. Applying the Laplace transform to the both sides one
obtains

sY 2(s) =
2
s3

.

Therefore

Y (s) = ±
√

2
s2

and
y(t) = L−1Y (t) = ±

√
2 t.

Problem 2

a. Let a function f(x), x ∈ (0, 2π) be defined by the relation

f(x) =

{
x, if 0 ≤ x ≤ π;
2π − x, if π ≤ x ≤ 2π.

Find the sine Fourier series of f .

Solution. The general formula has the form

bn =
2
L

∫ L

0

f(x) sin
nπ

L
x dx.

In the our case L = 2π and

bn =
1
π

∫ π

0

x sin
n

2
x dx +

1
π

∫ 2π

π

(2π − x) sin
n

2
x dx = I1 + I2.

A direct evaluation of the integrals gives

I1 = − 1
π

cos
nπ

2
+

4
πn2

sin
nπ

2
, I2 =

1
π

cos
nπ

2
+

4
πn2

sin
nπ

2
,

and

bn = I1 + I2 =
8

πn2
sin

nπ

2
=

{
0, if n = 2k;
(−1)k 8

π(2k+1)2 , if n = 2k + 1.
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Finally

f(x) ∼ 8
π

∞∑

k=0

(−1)k

(2k + 1)2
sin

2k + 1
2

x (2)

b. Find all solutions of the form u(x, t) = X(x)T (t) for the problem

∂u

∂t
=

∂2u

∂t2
+ u, 0 < x < 2π, t > 0, (3)

which satisfy the boundary conditions

u(0, t) = 0, u(2π, t) = 0, t > 0. (4)

Solution. Substituting a function u of the form u(x, t) = X(x)T (t) we obtain

T ′(t)
T (t)

− 1 =
X ′′(x)
X(x)

= k.

This is a constant because it is independent both of t and x. Taking into account the boundary
conditions (4) we obtain an equation with respect to X:

X ′′(x)− kX(x) = 0, 0 > x < 2π, and X(0) = 0, X(2π) = 0. (5)

and an equation with respect to T :

T ′(t)− (k + 1)T (t) = 0, t > 0. (6)

The standard analysis shows that the only possible k’s for which the problem (5) has non-trivial
solutions are of the form

kn = −
(n

2

)2

, n = 1, 2, . . . .

The corresponding solutions of (5) are of the form

Xn(x) = An sin
n

2
x, n = 1, 2, . . . .

For each kn equation (6) takes now the form

T ′n(t)−
(
1− (

n

2
)2

)
Tn(t) = 0.

These equations have solutions
Tn(t) = Cne1−( n

2 )2t.

Finally we obtain
un(x, t) = Bne1−( n

2 )2t sin
n

2
x, n = 1, 2, . . . .
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c. Find the solution of the problem (3), (4) formulated in section b, which in addition satisfies the
initial condition

u(x, 0) = f(x), 0 < x < 2π,

here the function f is defined in section a.

Answer:

u(x, t) =
8
π

∞∑

k=0

(−1)k

(2k + 1)2
e−(k2+k−3/4)t sin

2k + 1
2

x

Problem 3 Given the function

f(x) =

{
cosx, if |x| ≤ 1;
0, otherwise.

Find the Fourier transform of f and evaluate the integral
∫ ∞

−∞

sin 2w

w
cos w dw.

Solution. We use
cosx =

1
2

(
eix + e−ix

)
.

Therefore

f̂(w) =
1√
2π

1
2

∫ 1

−1

e−ix(w−1)dx +
1√
2π

1
2

∫ 1

−1

e−ix(w+1)dx.

A direct calculation gives

1√
2π

1
2

∫ 1

−1

e−ix(w−1)dx =
1√
2π

sin(w − 1)
w − 1

(7)

1√
2π

1
2

∫ 1

−1

e−ix(w+1)dx =
1√
2π

sin(w + 1)
w + 1

(8)

Therefore
f̂(w) =

1√
2π

( sin(w − 1)
w − 1

+
sin(w + 1)

w + 1

)
.

In order to evaluate the integral put u = w − 1 in (7) (equivalently you may put u = w + 1 in (8)).
You will obtain

1√
2π

1
2

∫ 1

−1

e−ixudx =
1√
2π

sin u

u
.

Inverse Fourier transform formula yields

1
2π

∫ ∞

−∞

sin u

u
eiuxdu =





1
2 , if |x| < 1;
1
4 , if |x| = 1;
0, if |x| > 1.
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In this formula change variables u = 2w and put x = 1/2:

1
2π

∫ ∞

−∞

sin 2w

w
eiwdw =

1
2
.

Take the real part of the both sides and multiply by 2π:
∫ ∞

−∞

sin 2w

w
cos w dw = π.

Problem 4 You are given the problem

u′′′ + (3− u′)u′′ + 2u = 0
u(0) = 1
u′(0) = 2
u′′(0) = 5.

(9)

a) Write the problem as a system of equations.
We introduce

u1 = u

u2 = u′

u3 = u′′

which yields the system

u′1 = u2

u′2 = u3

u′3 = − ((3− u2) u3 + 2u1)

with initial conditions
u1(0) = 1 u2(0) = 2 u3(0) = 5.

Heun’s method can be viewed as a predictor-corrector combination of Euler’s method and the
trapezoidal rule.

Backward Euler is given by

un+1 = un + hf (tn+1,un+1) .

Give a method using Euler’s method as a predictor and backward Euler as a corrector.

The method can be written as

u∗n+1 = un + hf(tn, un)

un+1 = un + hf (tn+1, u
∗
n+1) .
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b) Apply one step of the method you obtained in a) to (9). Use h = 0.1.

u∗1 =




1
2
5


 + h




2
5

− ((3− 2) 5 + 2 · 1)


 =




1.20
2.50
4.30




u1 =




1
2
5


 + h




2.50
4.30

− ((3− 2.50) · 4.30 + 2 · 1.20)


=




1.25
2.43
5.03




If you did not manage to find the method in a), use Heun’s method instead. 1

k1 =




2
5

− ((3− 2) 5 + 2 · 1)


=




2
5
−7




k2 = f (h,u0 + hk1) =




2.50
4.30
−4.55




u1 = u0 +
h

2
(k1 + k2) =




1.23
2.47
4.42




Problem 5

a) Find the polynomial p2(x) which interpolates

xk -2 -1 2
fk -13 -5 7

using Lagrangian interpolation.

We need the cardinal polynomials, they are given by

l0(x) =
(x + 1)(x− 2)

(−2 + 1)(−2− 2)
=

1

4
(x + 1)(x− 2)

l1(x) =
(x + 2)(x− 2)

(−1 + 2)(−1− 2)
=− 1

3
(x + 2)(x− 2)

l2(x) =
(x + 2)(x− 1)

(2 + 2)(2 + 1)
=

1

12
(x + 2)(x + 1).

We now find our polynomial as

p2(x) = f0l0(x) + f1l1(x) + f2l2(x) = −x2 + 5x + 1.

b) We then add another datapoint. We now want to find the polynomial p3(x) of the lowest

xk -2 -1 2 3
fk -13 -5 7 4 .

You can choose how you find this polynomial yourself.
1There was an error in the formula list. This will be taken into consideration during the grading.
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In order to save ourself some work here, we can use the fact that a polynomial is uniquely given by its
data and nodal values. This means that we can reuse p2(x). We use Newtonian interpolation to find the
polynomial as

p3(x) = p2(x) + f [x0, x1, x2, x3] (x− x0) (x− x1) (x− x2) .

This yields
xk fk

-2 -13 8 -1 -3/20
-1 -5 4 -7/4
2 7 -3
3 4.

We now insert this to get

p3(x) = p2(x)− 3

20
(x + 2) (x + 1) (x− 2) = − 3

20
x3 − 23

20
x2 +

28

5
x +

8

5
.


