TMA4130, Fall 2007, Solutions

Problem 1 Find function $y(t), t \geq 0$ such that $y(0)=0$ and

$$
\begin{equation*}
\int_{0}^{t} y^{\prime}(u) y(t-u) d u=t^{2}, \quad t>0 \tag{1}
\end{equation*}
$$

Solution. Let $Y(s)=\mathcal{L} y(s)$. Since $y(0)=0$ we obtain $\mathcal{L} y^{\prime}(s)=s Y(s)$. The left-hand side of the equation (1) is the convolution of y and y^{\prime}. Applying the Laplace transform to the both sides one obtains

$$
s Y^{2}(s)=\frac{2}{s^{3}}
$$

Therefore

$$
Y(s)= \pm \frac{\sqrt{2}}{s^{2}}
$$

and

$$
\underline{y(t)=\mathcal{L}^{-1} Y(t)= \pm \sqrt{2} t .}
$$

Problem 2

a. Let a function $f(x), x \in(0,2 \pi)$ be defined by the relation

$$
f(x)= \begin{cases}x, & \text { if } 0 \leq x \leq \pi \\ 2 \pi-x, & \text { if } \pi \leq x \leq 2 \pi\end{cases}
$$

Find the sine Fourier series of f.

Solution. The general formula has the form

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

In the our case $L=2 \pi$ and

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \sin \frac{n}{2} x d x+\frac{1}{\pi} \int_{\pi}^{2 \pi}(2 \pi-x) \sin \frac{n}{2} x d x=I_{1}+I_{2}
$$

A direct evaluation of the integrals gives

$$
I_{1}=-\frac{1}{\pi} \cos \frac{n \pi}{2}+\frac{4}{\pi n^{2}} \sin \frac{n \pi}{2}, \quad I_{2}=\frac{1}{\pi} \cos \frac{n \pi}{2}+\frac{4}{\pi n^{2}} \sin \frac{n \pi}{2},
$$

and

$$
b_{n}=I_{1}+I_{2}=\frac{8}{\pi n^{2}} \sin \frac{n \pi}{2}= \begin{cases}0, & \text { if } n=2 k \\ (-1)^{k} \frac{8}{\pi(2 k+1)^{2}}, & \text { if } n=2 k+1\end{cases}
$$

Finally

$$
\begin{equation*}
f(x) \sim \frac{8}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin \frac{2 k+1}{2} x \tag{2}
\end{equation*}
$$

b. Find all solutions of the form $u(x, t)=X(x) T(t)$ for the problem

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial t^{2}}+u, \quad 0<x<2 \pi, t>0 \tag{3}
\end{equation*}
$$

which satisfy the boundary conditions

$$
\begin{equation*}
u(0, t)=0, u(2 \pi, t)=0, \quad t>0 \tag{4}
\end{equation*}
$$

Solution. Substituting a function u of the form $u(x, t)=X(x) T(t)$ we obtain

$$
\frac{T^{\prime}(t)}{T(t)}-1=\frac{X^{\prime \prime}(x)}{X(x)}=k .
$$

This is a constant because it is independent both of t and x. Taking into account the boundary conditions (4) we obtain an equation with respect to X :

$$
\begin{equation*}
X^{\prime \prime}(x)-k X(x)=0,0>x<2 \pi, \quad \text { and } X(0)=0, X(2 \pi)=0 \tag{5}
\end{equation*}
$$

and an equation with respect to T :

$$
\begin{equation*}
T^{\prime}(t)-(k+1) T(t)=0, t>0 \tag{6}
\end{equation*}
$$

The standard analysis shows that the only possible k 's for which the problem (5) has non-trivial solutions are of the form

$$
k_{n}=-\left(\frac{n}{2}\right)^{2}, n=1,2, \ldots
$$

The corresponding solutions of (5) are of the form

$$
X_{n}(x)=A_{n} \sin \frac{n}{2} x, n=1,2, \ldots
$$

For each k_{n} equation (6) takes now the form

$$
T_{n}^{\prime}(t)-\left(1-\left(\frac{n}{2}\right)^{2}\right) T_{n}(t)=0
$$

These equations have solutions

$$
T_{n}(t)=C_{n} e^{1-\left(\frac{n}{2}\right)^{2} t} .
$$

Finally we obtain

$$
u_{n}(x, t)=B_{n} e^{1-\left(\frac{n}{2}\right)^{2} t} \sin \frac{n}{2} x, n=1,2, \ldots
$$

c. Find the solution of the problem (3), (4) formulated in section \mathbf{b}, which in addition satisfies the initial condition

$$
u(x, 0)=f(x), 0<x<2 \pi
$$

here the function f is defined in section a.

Answer:

$$
u(x, t)=\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} e^{-\left(k^{2}+k-3 / 4\right) t} \sin \frac{2 k+1}{2} x
$$

Problem 3 Given the function

$$
f(x)= \begin{cases}\cos x, & \text { if }|x| \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the Fourier transform of f and evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin 2 w}{w} \cos w d w
$$

Solution. We use

$$
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
$$

Therefore

$$
\hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-1}^{1} e^{-i x(w-1)} d x+\frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-1}^{1} e^{-i x(w+1)} d x
$$

A direct calculation gives

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-1}^{1} e^{-i x(w-1)} d x=\frac{1}{\sqrt{2 \pi}} \frac{\sin (w-1)}{w-1} \tag{7}\\
& \frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-1}^{1} e^{-i x(w+1)} d x=\frac{1}{\sqrt{2 \pi}} \frac{\sin (w+1)}{w+1} \tag{8}
\end{align*}
$$

Therefore

$$
\hat{f}(w)=\frac{1}{\sqrt{2 \pi}}\left(\frac{\sin (w-1)}{w-1}+\frac{\sin (w+1)}{w+1}\right)
$$

In order to evaluate the integral put $u=w-1$ in (7) (equivalently you may put $u=w+1$ in (8)). You will obtain

$$
\frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-1}^{1} e^{-i x u} d x=\frac{1}{\sqrt{2 \pi}} \frac{\sin u}{u} .
$$

Inverse Fourier transform formula yields

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sin u}{u} e^{i u x} d u= \begin{cases}\frac{1}{2}, & \text { if }|x|<1 \\ \frac{1}{4}, & \text { if }|x|=1 \\ 0, & \text { if }|x|>1\end{cases}
$$

In this formula change variables $u=2 w$ and put $x=1 / 2$:

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sin 2 w}{w} e^{i w} d w=\frac{1}{2}
$$

Take the real part of the both sides and multiply by 2π :

$$
\int_{-\infty}^{\infty} \frac{\sin 2 w}{w} \cos w d w=\pi
$$

Problem 4 You are given the problem

$$
\begin{align*}
u^{\prime \prime \prime}+\left(3-u^{\prime}\right) u^{\prime \prime}+2 u & =0 \\
u(0) & =1 \\
u^{\prime}(0) & =2 \tag{9}\\
u^{\prime \prime}(0) & =5 .
\end{align*}
$$

a) Write the problem as a system of equations.

We introduce

$$
\begin{aligned}
& u_{1}=u \\
& u_{2}=u^{\prime} \\
& u_{3}=u^{\prime \prime}
\end{aligned}
$$

which yields the system

$$
\begin{aligned}
u_{1}^{\prime} & =u_{2} \\
u_{2}^{\prime} & =u_{3} \\
u_{3}^{\prime} & =-\left(\left(3-u_{2}\right) u_{3}+2 u_{1}\right)
\end{aligned}
$$

with initial conditions

$$
u_{1}(0)=1 \quad u_{2}(0)=2 \quad u_{3}(0)=5 .
$$

Heun's method can be viewed as a predictor-corrector combination of Euler's method and the trapezoidal rule.
Backward Euler is given by

$$
\mathbf{u}_{n+1}=\mathbf{u}_{n}+h f\left(t_{n+1}, \mathbf{u}_{n+1}\right)
$$

Give a method using Euler's method as a predictor and backward Euler as a corrector.
The method can be written as

$$
\begin{aligned}
& u_{n+1}^{*}=u_{n}+h f\left(t_{n}, u_{n}\right) \\
& u_{n+1}=u_{n}+h f\left(t_{n+1}, u_{n+1}^{*}\right)
\end{aligned}
$$

b) Apply one step of the method you obtained in a) to (9). Use $h=0.1$.

$$
\begin{aligned}
& \mathbf{u}_{1}^{*}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]+h\left[\begin{array}{c}
2 \\
5 \\
-((3-2) 5+2 \cdot 1)
\end{array}\right]=\left[\begin{array}{l}
1.20 \\
2.50 \\
4.30
\end{array}\right] \\
& \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]+h\left[\begin{array}{c}
2.50 \\
4.30 \\
-((3-2.50) \cdot 4.30+2 \cdot 1.20)
\end{array}\right]=\left[\begin{array}{l}
1.25 \\
2.43 \\
5.03
\end{array}\right]
\end{aligned}
$$

If you did not manage to find the method in a), use Heun's method instead. ${ }^{1}$

$$
\begin{aligned}
& \mathbf{k}_{1}=\left[\begin{array}{c}
2 \\
5 \\
-((3-2) 5+2 \cdot 1)
\end{array}\right]=\left[\begin{array}{c}
2 \\
5 \\
-7
\end{array}\right] \\
& \mathbf{k}_{2}=\mathbf{f}\left(h, \mathbf{u}_{0}+h \mathbf{k}_{1}\right) \quad=\left[\begin{array}{c}
2.50 \\
4.30 \\
-4.55
\end{array}\right] \\
& \mathbf{u}_{1}=\mathbf{u}_{0}+\frac{h}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)=\left[\begin{array}{l}
1.23 \\
2.47 \\
4.42
\end{array}\right]
\end{aligned}
$$

Problem 5

a) Find the polynomial $p_{2}(x)$ which interpolates

$$
\begin{array}{c|c|c|c}
x_{k} & -2 & -1 & 2 \\
\hline f_{k} & -13 & -5 & 7
\end{array}
$$

using Lagrangian interpolation.
We need the cardinal polynomials, they are given by

$$
\begin{aligned}
& l_{0}(x)=\frac{(x+1)(x-2)}{(-2+1)(-2-2)}=\frac{1}{4}(x+1)(x-2) \\
& l_{1}(x)=\frac{(x+2)(x-2)}{(-1+2)(-1-2)}=-\frac{1}{3}(x+2)(x-2) \\
& l_{2}(x)=\frac{(x+2)(x-1)}{(2+2)(2+1)}=\frac{1}{12}(x+2)(x+1)
\end{aligned}
$$

We now find our polynomial as

$$
p_{2}(x)=f_{0} l_{0}(x)+f_{1} l_{1}(x)+f_{2} l_{2}(x)=-x^{2}+5 x+1 .
$$

b) We then add another datapoint. We now want to find the polynomial $p_{3}(x)$ of the lowest

$$
\begin{array}{c|c|c|c|c}
x_{k} & -2 & -1 & 2 & 3 \\
\hline f_{k} & -13 & -5 & 7 & 4
\end{array} .
$$

You can choose how you find this polynomial yourself.

[^0]In order to save ourself some work here, we can use the fact that a polynomial is uniquely given by its data and nodal values. This means that we can reuse $p_{2}(x)$. We use Newtonian interpolation to find the polynomial as

$$
p_{3}(x)=p_{2}(x)+f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) .
$$

This yields

x_{k}	f_{k}			
-2	-13	8	-1	$-3 / 20$
-1	-5	4	$-7 / 4$	
2	7	-3		
3	4.			

We now insert this to get

$$
p_{3}(x)=p_{2}(x)-\frac{3}{20}(x+2)(x+1)(x-2)=-\frac{3}{20} x^{3}-\frac{23}{20} x^{2}+\frac{28}{5} x+\frac{8}{5} .
$$

[^0]: ${ }^{1}$ There was an error in the formula list. This will be taken into consideration during the grading.

