Contact during exam:
Yurii Lyubarskii
(73 5935 26)
Numerical part:
Arne Morten Kvarving

EXAM IN MATHEMATICS 4N (TMA4130)

Saturday December 82007
Time: 09:00-13:00 Final grades: Januar 72008
Permitted Aids:
Approved calculator.
Formula sheet (handed out with the exam).

Problem 1 Find the function $y(t), t \geq 0$ such that

$$
\int_{0}^{t} y^{\prime}(u) y(t-u) d t=t^{2}, t>0
$$

and $y(0)=0$.

Problem 2

a) Given the function on ($0,2 \pi$)

$$
f(x)= \begin{cases}x, & \text { if } 0<x<\pi \\ 2 \pi-x, & \text { if } \pi<x<2 \pi\end{cases}
$$

find the sin-Fourier series for f.
b) Find all solutions having the form $u(x, t)=X(x) T(t)$ of the problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u, \quad 0<x<2 \pi, t>0 \\
u(0, t)=0, \quad u(2 \pi, t)=0
\end{gathered}
$$

c) Find a solution to the problem in part b) such that

$$
u(x, 0)=f(x), 0<x<2 \pi,
$$

where the function f is defined in part a)

Problem 3 Let a function f on $(-\infty, \infty)$ is defined as

$$
f(x)= \begin{cases}\cos x, & \text { if }|x|<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the Fourier transform of f and then evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin 2 w}{w} \cos w d w
$$

Problem 4 You are given the problem

$$
\begin{align*}
u^{\prime \prime \prime}+\left(3-u^{\prime}\right) u^{\prime \prime}+2 u & =0 \\
u(0) & =1 \\
u^{\prime}(0) & =2 \tag{1}\\
u^{\prime \prime}(0) & =5 .
\end{align*}
$$

a) Write the problem as a system of equations.

Heun's method can be viewed as a predictor-corrector combination of Euler's method and the trapezoidal rule.
Backward Euler is given by

$$
\underline{u}_{n+1}=\underline{u}_{n}+h f\left(t_{n+1}, \underline{u}_{n+1}\right) .
$$

Give a method using Euler's method as a predictor and backward Euler as a corrector.
b) Apply one step of the method you obtained in a) to (??). Use $h=0.1$.

If you did not manage to find the method in a), use Heun's method instead.

Problem 5

a) Find the polynomial $p_{2}(x)$ which interpolates

$$
\begin{array}{c|c|c|c}
x_{k} & -2 & -1 & 2 \\
\hline f_{k} & -13 & -5 & 7
\end{array}
$$

using Lagrangian interpolation.
b) We then add another datapoint. We now want to find the polynomial $p_{3}(x)$ of the lowest possible degree which interpolates the data set

$$
\begin{array}{c|c|c|c|c}
t_{k} & -2 & -1 & 2 & 3 \\
\hline f_{k} & -13 & -5 & 7 & 4
\end{array} .
$$

You can choose how you find this polynomial yourself.

Numerics formulae

- Error in polynomial interpolation

$$
f(x)-p(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

If the nodes are equidistant (including the end points) and $\left|f^{(n+1)}(\xi)\right| \leq M$ this yields

$$
|f(x)-p(x)| \leq \frac{1}{4(n+1)} M\left(\frac{b-a}{n}\right)^{n+1}
$$

- Numerical differentiation

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{h}(f(x+h)-f(x))+\frac{h}{2} f^{\prime \prime}(\xi) \\
& f^{\prime}(x)=\frac{1}{2 h}(f(x+h)-f(x-h))-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi) \\
& f^{\prime \prime}(x)=\frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))-\frac{h^{2}}{12} f^{(4)}(\xi) .
\end{aligned}
$$

- Newton's method for the resolution of systems of non-linear equations $\mathbf{f}(\mathbf{x})=\mathbf{0}$

$$
\begin{gathered}
\mathbf{J}^{(k)} \cdot \Delta \mathbf{x}^{(k)}=-\mathbf{f}\left(\mathbf{x}^{(k)}\right), \\
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\Delta \mathbf{x}^{(k)} .
\end{gathered}
$$

- Iterative methods for systems of linear equations

$$
\begin{array}{r}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1,2, \cdots, n \\
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) \tag{Jacobi}\\
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) .
\end{array}
$$

- A second order Runge-Kutta method (Heun) for initial value problems

$$
\begin{aligned}
\mathbf{k}_{1} & =h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) \\
\mathbf{k}_{2} & =h \mathbf{f}\left(x_{n}+h, \mathbf{y}_{n}+h \mathbf{k}_{1}\right) \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+\frac{1}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)
\end{aligned}
$$

Also note that there are a few formulae relating to numerics in "Appendix A" of K. Rottmann: Matematisk formelsamling.

Table of Laplace transforms

$f(t)$	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$t^{n}(n=0,1,2, \ldots)$	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$
$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
$e^{a t} \cos \omega t$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$
$e^{a t} \sin \omega t$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$

