Solutions to the Exam in Math 4N \& 4M

Problem 1 (Only for Math 4N)

a) The solution requires the t-shifting theorem. We see from the table of Laplace transforms given that $1 /(s+1)(s-1)=\mathscr{L}[\sinh t](s)$. Therefore, the desired inverse transform is

$$
u(t-a) \sinh (t-a) \quad\left(\text { or } u(t-a) \frac{e^{t-a}-e^{-(t-a)}}{2}\right)
$$

b) Applying the Laplace transform to the given ODE, and using the initial conditions, we get

$$
\left(s^{2} Y(s)-s-1\right)-Y(s)=2 e^{-s}
$$

where Y denotes the Laplace transform of the solution y. This gives:

$$
Y(s)=\frac{2 e^{-s}}{s^{2}-1}+\frac{1}{s-1} .
$$

Taking the inverse transform, and using the result of part (a), gives the solution $y(t)=2 u(t-1) \sinh (t-1)+e^{t}$.

Problem 2 (Problem 1 for Math 4M)
a) A sketch of the graph of the given f on the interval $[-3 \pi, 3 \pi)$ is given at the top of the next page.
The Fourier coefficient

$$
A_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} x d x=\pi / 4
$$

The Fourier coefficients

$$
\begin{aligned}
A_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x & =\frac{1}{\pi}\left[\left.\frac{x \sin (n x)}{n}\right|_{x=0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right] \\
& =\left.\frac{\cos (n x)}{\pi n^{2}}\right|_{x=0} ^{\pi} \\
& =\frac{(-1)^{n}-1}{\pi n^{2}}
\end{aligned}
$$

for $n=1,2,3, \ldots$ The Fourier coefficients

$$
\begin{aligned}
B_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x & =\frac{1}{\pi}\left[-\left.\frac{x \cos (n x)}{n}\right|_{x=0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x\right] \\
& =\frac{(-1)^{n+1}}{n}+\left.\frac{\sin (n x)}{\pi n^{2}}\right|_{x=0} ^{\pi} \\
& =\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

for $n=1,2,3, \ldots$ Therefore, the Fourier series of f is

$$
\begin{equation*}
\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right] \tag{1}
\end{equation*}
$$

b) We can substitute $x=0$ in (1). This procedure is completely straightforward. We could also compute the given series by taking $x=\pi$ in (1). However, we need to be careful with this option because f has a jump-discontinuity at $x=\pi$. This implies that

$$
\frac{f(\pi+)+f(\pi-)}{2}=\frac{\pi}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{\pi n^{2}} \cos (n \pi)
$$

Observe that $f(\pi-)=\pi$ and $f(\pi+)=0$. Rearranging terms in the above equation, we get

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Problem 3 (Problem 2 for Math 4M) Since $|x|=-x$ when $x<0$ and $|x|=x$ otherwise, we have

$$
\widehat{f}(w)=\frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0} x e^{(a-i w) x} d x+\int_{0}^{\infty} x e^{-(a+i w) x} d x\right] \equiv \frac{1}{\sqrt{2 \pi}}\left(I_{1}+I_{2}\right)
$$

Using integration by parts, we get:

$$
\begin{aligned}
I_{1} & =\left.\frac{x e^{(a-i w) x}}{a-i w}\right|_{x=-\infty} ^{0}-\frac{1}{a-i w} \int_{-\infty}^{0} e^{(a-i w) x} d x \\
& =\left.\frac{x e^{(a-i w) x}}{a-i w}\right|_{x=-\infty} ^{0}-\left.\frac{e^{(a-i w) x}}{(a-i w)^{2}}\right|_{x=-\infty} ^{0} \\
& =\lim _{t \rightarrow \infty}\left[-\frac{(-t) e^{-a t} e^{i w t}}{a-i w}-\frac{1}{(a-i w)^{2}}+\frac{e^{-a t} e^{i w t}}{(a-i w)^{2}}\right] .
\end{aligned}
$$

Since it is given that $a>0$, and $e^{i w t}$ is bounded for all t, the third term above converges to 0 . Furthermore, we know that $t^{p} e^{-a t} \rightarrow 0$, for any power p, as $t \rightarrow \infty$. Hence, the first term above converges to 0 . Thus $I_{1}=-1 /(a-i w)^{2}$.

In a similar way, the calculation of I_{2} proceeds as follows:

$$
\begin{aligned}
I_{2} & =-\left.\frac{x e^{-(a+i w) x}}{a+i w}\right|_{x=0} ^{\infty}+\frac{1}{a+i w} \int_{0}^{\infty} e^{-(a+i w) x} d x \\
& =-\left.\frac{x e^{-(a+i w) x}}{a+i w}\right|_{x=0} ^{\infty}-\left.\frac{e^{-(a+i w) x}}{(a+i w)^{2}}\right|_{x=0} ^{\infty} \\
& =\lim _{t \rightarrow \infty}\left[-\frac{t e^{-a t} e^{-i w t}}{a+i w}+\frac{1}{(a+i w)^{2}}-\frac{e^{-a t} e^{-i w t}}{(a+i w)^{2}}\right] .
\end{aligned}
$$

By exactly the same arguments as above to justify the limits, we get $I_{2}=1 /(a+i w)^{2}$. Combining the values of I_{1} and I_{2}, we get

$$
\begin{align*}
\widehat{f}(w) & =\frac{1}{\sqrt{2 \pi}}\left[-\frac{1}{(a-i w)^{2}}+\frac{1}{(a+i w)^{2}}\right] \\
& =-\frac{4 i a w}{\sqrt{2 \pi}\left(a^{2}+w^{2}\right)^{2}} . \tag{2}
\end{align*}
$$

To evaluate the given integral, we use the Fourier-inversion formula. By (2), have:

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{-4 i a w}{\left(a^{2}+w^{2}\right)^{2}} e^{i w x} d w \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{-4 i a w(\cos (w x)+i \sin (w x))}{\left(a^{2}+w^{2}\right)^{2}} d w
\end{aligned}
$$

Since $f(x)$ is real-valued, the imaginary part on the right-hand side of the above equation must equal zero. Hence

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{4 a w \sin (w x)}{\left(a^{2}+w^{2}\right)^{2}} d w \forall x \in \mathbb{R}
$$

The above holds true for each $x \in \mathbb{R}$ because f is a continuous function and, as $a>0$, satisfies all the conditions of the theorem that gives us the Fourier-inversion formula. Taking $x=1$ and $a=1$ in the last equations gives us the answer:

$$
\int_{-\infty}^{\infty} \frac{w(\sin (w)}{\left(1+w^{2}\right)^{2}} d w=\left.\frac{\pi}{2} e^{-|x|}\right|_{x=1}=\frac{\pi e^{-1}}{2}
$$

Problem 4 (Problem 3 for Math 4M)
a) Assuming u to be of the form $u(x, t)=F(x) G(t)$, we get

$$
u_{t}=F \dot{G}, \quad u_{x x}=F^{\prime \prime} G .
$$

Substituting into the given PDE, we have $F \dot{G}=\left(F^{\prime \prime}-5 F\right) G$. Since we seek non-trivial solutions, $F G$ cannot be identically zero. Therefore, we divide the last equation by $F G$ to get

$$
\frac{\dot{G}}{G}(t)+5=\frac{F^{\prime \prime}(x)}{F(x)} \quad \forall t>0 \text { and } x \in(0, \pi) .
$$

This can only be possible if both sides of the above equation are constant. This gives us the following ODEs for F and G :

$$
\begin{align*}
\dot{G}+(5-k) G & =0, \tag{3}\\
F^{\prime \prime}-k F & =0, \tag{4}
\end{align*}
$$

where k is a yet-undetermined constant.
As $u \not \equiv 0$, the boundary conditions imply that

$$
F^{\prime}(0)=0=F^{\prime}(\pi)
$$

The equation (4) has three different types of solutions depending on the sign of k

Case 1. When $k>0$.
In this situation, $F(x)=C_{1} e^{\sqrt{k} x}+C_{2} e^{-\sqrt{k} x}$. If F has to satisfy the boundary conditions at $x=0, \pi$, then a routine argument shows that $C_{1}=C_{2}=0$. Thus, the case $k>0$ does not yield any non-trivial solutions.
Case 2. When $k=0$.
In this situation, $F(x)=C_{1} x+C_{2}$, whence $F^{\prime}(x)=C_{1}$. The boundary conditions imply that $C_{1}=0$, but the constant C_{2} can be non-zero. Thus, we now need to consider the equation that determines G. As $k=0$, (3) implies that $G(t)=A e^{-5 t}$, where A is some constant. Thus

$$
\begin{equation*}
u_{0}(x, t)=A_{0} e^{-5 t} \tag{5}
\end{equation*}
$$

is a solution of the $\operatorname{PDE}(*)$ of the product form satisfying the boundary conditions, where A_{0} is an undetermined constant.

Case 3. When $k<0$.
In this situation, it is notationally simpler to write $k=-p^{2}$. Then, $F(x)=$ $C_{1} \cos (p x)+C_{2} \sin (p x)$. The boundary conditions give us the equations

$$
p C_{2}=0, \quad-p C_{1} \sin (p \pi)+p C_{2} \cos (p \pi)=0
$$

In the present case, $p \neq 0$. Hence, $C_{2}=0$, and we are faced with the condition $\sin (p \pi)=0$. This implies

$$
p \pi=n \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

As $p \neq 0$, and as $\cos (-p x)=\cos (p x)$, it suffices to only consider $p=1,2,3, \ldots$ Corresponding to each of these values of $p, k=-n^{2}$, and solving (3) yields $G(t)=A e^{-\left(n^{2}+5\right) t}$. Thus, corresponding to each n, we have the solution

$$
\begin{equation*}
u_{n}(x, t)=A_{n} \cos (n x) e^{-\left(5+n^{2}\right) t}, \quad n=1,2,3, \ldots \tag{6}
\end{equation*}
$$

where A_{n} is an undetermined constant.
All possible solutions of $(*)$ of the product form that satisfy the given boundary conditions are given by (5) and (6).
b) For the given problem, we can use superposition to look for a solution of the form

$$
u(x, t)=A_{0} e^{-5 t}+\sum_{n=1}^{\infty} A_{n} \cos (n x) e^{-\left(5+n^{2}\right) t}
$$

Imposing the initial condition gives us

$$
\begin{equation*}
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n x)=\cos ^{2}\left(\frac{x}{2}\right)-2 \cos (5 x) \tag{7}
\end{equation*}
$$

We use a half-range expansion, with period 2π, for the function on the righthand side, and the above equation suggests a Fourier cosine series. But, rather than setting up the integrals to determine the Fourier coefficients, we recall the trigonometric identity:

$$
\cos ^{2}\left(\frac{x}{2}\right)=\frac{1+\cos (x)}{2}
$$

By (7) and orthogonality, $A_{n}=0$ for all n except $n=0,1$ and 5 . In the latter case: $A_{0}=1 / 2, A_{1}=1 / 2$ and $A_{5}=-2$. Hence

$$
u(x, t)=\frac{e^{-5 t}}{2}+\frac{\cos (x) e^{-6 t}}{2}-2 \cos (5 x) e^{-30 t}
$$

is the desired solution.

Problem 5 (Problem 4 for Math 4M)

a) We use the following approximation of the Laplace operator:

$$
\Delta u(x, y)=\frac{1}{h^{2}}(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)) .
$$

Combining this with the central difference approximation of u_{x} given in the problem, we obtain the following difference scheme for the given PDE:

$$
\begin{aligned}
1 & =\frac{1}{h^{2}}(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)) \\
& +\frac{1}{2 h}(u(x+h, y)-u(x-h, y)) .
\end{aligned}
$$

(With the notation $u_{i, j} \approx u(i, j)$ - i.e. the approximation of the solution to the Dirichlet problem at the grid-points - the above can be expressed as:

$$
\left.u_{i, j}=\frac{3}{8} u_{i+1, j}+\frac{1}{8} u_{i-1, j}+\frac{1}{4} u_{i, j+1}+\frac{1}{4} u_{i, j-1}-\frac{1}{4} .\right)
$$

b) The unknown quantities are then $u_{1,1}, u_{2,1}, u_{2,1}$ and $u_{2,2}$ while the other $u_{i, j}$ s are given by the prescribed boundary values. One iteration with the Gauss-Seidel method, with the starting values equal to 1 , yields:

$$
\begin{gathered}
u_{1,1}=\frac{3}{8} u_{2,1}+\frac{1}{8} u_{0,1}+\frac{1}{4} u_{1,2}+\frac{1}{4} u_{1,0}-\frac{1}{4}=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}, \\
u_{2,1}=\frac{3}{8} u_{3,1}+\frac{1}{8} u_{1,1}+\frac{1}{4} u_{2,2}+\frac{1}{4} u_{2,0}-\frac{1}{4}=2 \times \frac{3}{8}+\frac{1}{8} \times \frac{1}{2}+\frac{1}{4}+0-\frac{1}{4}=\frac{13}{16}, \\
u_{1,2}=\frac{3}{8} u_{2,2}+\frac{1}{8} u_{0,2}+\frac{1}{4} u_{1,3}+\frac{1}{4} u_{1,1}-\frac{1}{4}=\frac{3}{8}+\frac{1}{8}+0+\frac{1}{4} \times \frac{1}{2}-\frac{1}{4}=\frac{3}{8},
\end{gathered}
$$

and

$$
u_{2,2}=\frac{3}{8} u_{3,2}+\frac{1}{8} u_{1,2}+\frac{1}{4} u_{2,3}+\frac{1}{4} u_{2,1}-\frac{1}{4}=2 \times \frac{3}{8}+\frac{1}{8} \times \frac{3}{8}+0+\frac{1}{4} \times \frac{13}{16}-\frac{1}{4}=\frac{3}{4} .
$$

These are the approximations of $u(1,1), u(2,1), u(1,2)$ and $u(2,2)$ sought for.

Problem 6

a) We need to calculate Lagrange's interpolation polynomial. With the notation

$$
\begin{aligned}
P_{1} & =\left(x-\frac{1}{2}\right)(x-1)\left(x-\frac{3}{2}\right)(x-2), \\
P_{2} & =x(x-1)\left(x-\frac{3}{2}\right)(x-2), \\
P_{3} & =x\left(x-\frac{1}{2}\right)\left(x-\frac{3}{2}\right)(x-2), \\
P_{4} & =x\left(x-\frac{1}{2}\right)(x-1)(x-2), \\
P_{5} & =\left(x-\frac{1}{2}\right)(x-1)\left(x-\frac{3}{2}\right),
\end{aligned}
$$

the interpolating polynomial is given by

$$
-11 P_{1}(x) / P_{1}(0)-7 P_{2}(x) / P_{2}\left(\frac{1}{2}\right)+3 P_{3}(x) / P_{3}(1)+25 P_{4}(x) / P_{4}\left(\frac{3}{2}\right)+65 P_{5}(x) / P_{5}(2) .
$$

This simplifies to

$$
P(x)=8 x^{3}+6 x-11 .
$$

Alternatively, we can use Newton's divided-difference formula for Lagrange's interpolation polynomial.
b) Since Simpson's method is exact for polynomials of degree less than or equal to three, the error is zero.

Problem 7 (Only for Math 4M, Problem 5 for 4M)
a) Heun's method for solving an ODE. The output is an approximation of $y(b)$ with intial value $y(a)=y a$, where y is a solution of

$$
y^{\prime}=e^{-y}-1
$$

on (a, b). The output would be $Q \approx 0.5300$. Follows from $k_{1}=e^{-1}-1$, $k_{2}=e^{-e^{-1}}-1$ and $Q=\left(k_{1}+k_{2}\right) / 2$.
b) Since $h=1 / n$ and the method is of second order we have $y \approx y_{n}+C / n^{2}$. Hence we obtain $y-y_{n=2} \approx 1 / 3 \times(P-Q)=1 / 3 \times(0.4976-0.5300) \approx-0.01$.

