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Solutions to the Exam in Math 4N & 4M

Problem 1 (Only for Math 4N)

a) The solution requires the t-shifting theorem. We see from the table of Laplace
transforms given that 1/(s + 1)(s− 1) = L [sinh t](s). Therefore, the desired
inverse transform is

u(t− a) sinh(t− a)
(
or u(t− a)

et−a − e−(t−a)

2

)
.

b) Applying the Laplace transform to the given ODE, and using the initial con-
ditions, we get

(s2Y (s)− s− 1)− Y (s) = 2e−s,

where Y denotes the Laplace transform of the solution y. This gives:

Y (s) =
2e−s

s2 − 1
+

1

s− 1
.

Taking the inverse transform, and using the result of part (a), gives the solution
y(t) = 2u(t− 1) sinh(t− 1) + et.

Problem 2 (Problem 1 for Math 4M)

a) A sketch of the graph of the given f on the interval [−3π, 3π) is given at the
top of the next page.

The Fourier coefficient

A0 =
1

2π

∫ π

0

x dx = π/4.

The Fourier coefficients

An =
1

π

∫ π

0

x cos(nx) dx =
1

π

[
x sin(nx)

n

∣∣∣∣π
x=0

− 1

n

∫ π

0

sin(nx) dx

]
=

cos(nx)

πn2

∣∣∣∣π
x=0

=
(−1)n − 1

πn2
,
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for n = 1, 2, 3, . . . The Fourier coefficients

Bn =
1

π

∫ π

0

x sin(nx) dx =
1

π

[
−x cos(nx)

n

∣∣∣∣π
x=0

+
1

n

∫ π

0

cos(nx) dx

]
=

(−1)n+1

n
+

sin(nx)

πn2

∣∣∣∣π
x=0

=
(−1)n+1

n
,

for n = 1, 2, 3, . . . Therefore, the Fourier series of f is

π

4
+
∞∑
n=1

[
(−1)n − 1

πn2
cos(nx) +

(−1)n+1

n
sin(nx)

]
. (1)

b) We can substitute x = 0 in (1). This procedure is completely straightforward.

We could also compute the given series by taking x = π in (1). However, we
need to be careful with this option because f has a jump-discontinuity at
x = π. This implies that

f(π+) + f(π−)

2
=

π

4
+
∞∑
n=1

(−1)n − 1

πn2
cos(nπ).

Observe that f(π−) = π and f(π+) = 0. Rearranging terms in the above
equation, we get

∞∑
k=0

1

(2k + 1)2
=

π2

8
.
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Problem 3 (Problem 2 for Math 4M) Since |x| = −x when x < 0 and |x| = x
otherwise, we have

f̂(w) =
1√
2π

[∫ 0

−∞
xe(a−iw)x dx+

∫ ∞
0

xe−(a+iw)x dx

]
≡ 1√

2π
(I1 + I2).

Using integration by parts, we get:

I1 =
xe(a−iw)x

a− iw

∣∣∣∣0
x=−∞

− 1

a− iw

∫ 0

−∞
e(a−iw)x dx

=
xe(a−iw)x

a− iw

∣∣∣∣0
x=−∞

− e(a−iw)x

(a− iw)2

∣∣∣∣0
x=−∞

= lim
t→∞

[
−(−t)e−ateiwt

a− iw
− 1

(a− iw)2
+

e−ateiwt

(a− iw)2

]
.

Since it is given that a > 0, and eiwt is bounded for all t, the third term above
converges to 0. Furthermore, we know that tpe−at → 0, for any power p, as t→∞.
Hence, the first term above converges to 0. Thus I1 = −1/(a− iw)2.

In a similar way, the calculation of I2 proceeds as follows:

I2 = −xe
−(a+iw)x

a+ iw

∣∣∣∣∞
x=0

+
1

a+ iw

∫ ∞
0

e−(a+iw)x dx

= −xe
−(a+iw)x

a+ iw

∣∣∣∣∞
x=0

− e−(a+iw)x

(a+ iw)2

∣∣∣∣∞
x=0

= lim
t→∞

[
−te

−ate−iwt

a+ iw
+

1

(a+ iw)2
− e−ate−iwt

(a+ iw)2

]
.

By exactly the same arguments as above to justify the limits, we get I2 = 1/(a+iw)2.
Combining the values of I1 and I2, we get

f̂(w) =
1√
2π

[
− 1

(a− iw)2
+

1

(a+ iw)2

]
= − 4iaw√

2π(a2 + w2)2
. (2)

To evaluate the given integral, we use the Fourier-inversion formula. By (2), have:

f(x) =
1

2π

∫ ∞
−∞

−4iaw

(a2 + w2)2
eiwx dw

=
1

2π

∫ ∞
−∞

−4iaw(cos(wx) + i sin(wx))

(a2 + w2)2
dw.

Since f(x) is real-valued, the imaginary part on the right-hand side of the above
equation must equal zero. Hence

f(x) =
1

2π

∫ ∞
−∞

4aw sin(wx)

(a2 + w2)2
dw ∀x ∈ R.
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The above holds true for each x ∈ R because f is a continuous function and, as
a > 0, satisfies all the conditions of the theorem that gives us the Fourier-inversion
formula. Taking x = 1 and a = 1 in the last equations gives us the answer:∫ ∞

−∞

w(sin(w)

(1 + w2)2
dw =

π

2
e−|x|

∣∣
x=1

=
πe−1

2
.

Problem 4 (Problem 3 for Math 4M)

a) Assuming u to be of the form u(x, t) = F (x)G(t), we get

ut = FĠ, uxx = F ′′G.

Substituting into the given PDE, we have FĠ = (F ′′ − 5F )G. Since we seek
non-trivial solutions, FG cannot be identically zero. Therefore, we divide the
last equation by FG to get

Ġ

G
(t) + 5 =

F ′′(x)

F (x)
∀t > 0 and x ∈ (0, π).

This can only be possible if both sides of the above equation are constant.
This gives us the following ODEs for F and G:

Ġ+ (5− k)G = 0, (3)
F ′′ − kF = 0, (4)

where k is a yet-undetermined constant.

As u 6≡ 0, the boundary conditions imply that

F ′(0) = 0 = F ′(π).

The equation (4) has three different types of solutions depending on the sign
of k

Case 1. When k > 0.

In this situation, F (x) = C1e
√
kx + C2e

−
√
kx. If F has to satisfy the boundary

conditions at x = 0, π, then a routine argument shows that C1 = C2 = 0.
Thus, the case k > 0 does not yield any non-trivial solutions.

Case 2. When k = 0.

In this situation, F (x) = C1x + C2, whence F ′(x) = C1. The boundary
conditions imply that C1 = 0, but the constant C2 can be non-zero. Thus, we
now need to consider the equation that determines G. As k = 0, (3) implies
that G(t) = Ae−5t, where A is some constant. Thus

u0(x, t) = A0e
−5t (5)

is a solution of the PDE (∗) of the product form satisfying the boundary
conditions, where A0 is an undetermined constant.
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Case 3. When k < 0.

In this situation, it is notationally simpler to write k = −p2. Then, F (x) =
C1 cos(px) + C2 sin(px). The boundary conditions give us the equations

pC2 = 0, −pC1 sin(pπ) + pC2 cos(pπ) = 0.

In the present case, p 6= 0. Hence, C2 = 0, and we are faced with the condition
sin(pπ) = 0. This implies

pπ = nπ, n = 0,±1,±2, . . .

As p 6= 0, and as cos(−px) = cos(px), it suffices to only consider p = 1, 2, 3, . . .
Corresponding to each of these values of p, k = −n2, and solving (3) yields
G(t) = Ae−(n

2+5)t. Thus, corresponding to each n, we have the solution

un(x, t) = An cos(nx)e−(5+n
2)t, n = 1, 2, 3, . . . , (6)

where An is an undetermined constant.

All possible solutions of (∗) of the product form that satisfy the given boundary
conditions are given by (5) and (6).

b) For the given problem, we can use superposition to look for a solution of the
form

u(x, t) = A0e
−5t +

∞∑
n=1

An cos(nx)e−(5+n
2)t.

Imposing the initial condition gives us

A0 +
∞∑
n=1

An cos(nx) = cos2
(x

2

)
− 2 cos(5x). (7)

We use a half-range expansion, with period 2π, for the function on the right-
hand side, and the above equation suggests a Fourier cosine series. But, rather
than setting up the integrals to determine the Fourier coefficients, we recall
the trigonometric identity:

cos2
(x

2

)
=

1 + cos(x)

2
.

By (7) and orthogonality, An = 0 for all n except n = 0, 1 and 5. In the latter
case: A0 = 1/2, A1 = 1/2 and A5 = −2. Hence

u(x, t) =
e−5t

2
+

cos(x)e−6t

2
− 2 cos(5x)e−30t

is the desired solution.
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Problem 5 (Problem 4 for Math 4M)

a) We use the following approximation of the Laplace operator:

∆u(x, y) =
1

h2
(u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)) .

Combining this with the central difference approximation of ux given in the
problem, we obtain the following difference scheme for the given PDE:

1 =
1

h2
(u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y))

+
1

2h
(u(x+ h, y)− u(x− h, y)) .

(With the notation ui,j ≈ u(i, j) — i.e. the approximation of the solution to
the Dirichlet problem at the grid-points — the above can be expressed as:

ui,j =
3

8
ui+1,j +

1

8
ui−1,j +

1

4
ui,j+1 +

1

4
ui,j−1 −

1

4
. )

b) The unknown quantities are then u1,1, u2,1, u2,1 and u2,2 while the other ui,js are
given by the prescribed boundary values. One iteration with the Gauss-Seidel
method, with the starting values equal to 1, yields:

u1,1 =
3

8
u2,1 +

1

8
u0,1 +

1

4
u1,2 +

1

4
u1,0 −

1

4
=

3

8
+

1

8
=

1

2
,

u2,1 =
3

8
u3,1 +

1

8
u1,1 +

1

4
u2,2 +

1

4
u2,0 −

1

4
= 2× 3

8
+

1

8
× 1

2
+

1

4
+ 0− 1

4
=

13

16
,

u1,2 =
3

8
u2,2 +

1

8
u0,2 +

1

4
u1,3 +

1

4
u1,1 −

1

4
=

3

8
+

1

8
+ 0 +

1

4
× 1

2
− 1

4
=

3

8
,

and

u2,2 =
3

8
u3,2 +

1

8
u1,2 +

1

4
u2,3 +

1

4
u2,1−

1

4
= 2× 3

8
+

1

8
× 3

8
+ 0 +

1

4
× 13

16
− 1

4
=

3

4
.

These are the approximations of u(1, 1), u(2, 1), u(1, 2) and u(2, 2) sought for.

Problem 6

a) We need to calculate Lagrange’s interpolation polynomial. With the notation

P1 = (x− 1

2
)(x− 1)(x− 3

2
)(x− 2),

P2 = x(x− 1)(x− 3

2
)(x− 2),

P3 = x(x− 1

2
)(x− 3

2
)(x− 2),

P4 = x(x− 1

2
)(x− 1)(x− 2),

P5 = (x− 1

2
)(x− 1)(x− 3

2
),
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the interpolating polynomial is given by

−11P1(x)/P1(0)−7P2(x)/P2(
1

2
)+3P3(x)/P3(1)+25P4(x)/P4(

3

2
)+65P5(x)/P5(2).

This simplifies to
P (x) = 8x3 + 6x− 11.

Alternatively, we can use Newton’s divided-difference formula for La-
grange’s interpolation polynomial.

b) Since Simpson’s method is exact for polynomials of degree less than or equal
to three, the error is zero.

Problem 7 (Only for Math 4M, Problem 5 for 4M)

a) Heun’s method for solving an ODE. The output is an approximation of y(b)
with intial value y(a) = ya, where y is a solution of

y′ = e−y − 1

on (a, b). The output would be Q ≈ 0.5300. Follows from k1 = e−1 − 1,
k2 = e−e

−1 − 1 and Q = (k1 + k2)/2.

b) Since h = 1/n and the method is of second order we have y ≈ yn + C/n2.
Hence we obtain y−yn=2 ≈ 1/3× (P −Q) = 1/3× (0.4976−0.5300) ≈ −0.01.


