In all problems you are supposed to show the details of your work and describe what you are doing.

1 Compute the Fourier transform of the following functions

1. $f(x)=x^{2} e^{-x^{2}}$ (hint: use the fact that $\left.\mathcal{F}\left(e^{-x^{2}}\right)=\frac{1}{\sqrt{2}} e^{-\frac{w^{2}}{4}}\right)$.
2. $f(x)= \begin{cases}x & \text { for }-1<x<1, \\ 0 & \text { otherwise } .\end{cases}$
3. $f(x)= \begin{cases}\cos (x) & \text { for }-\pi / 2<x<\pi / 2, \\ 0 & \text { otherwise } .\end{cases}$

2 One can show that the Fourier transform of the function

$$
f(x)=\frac{x}{1+x^{2}} \tan x
$$

is the function

$$
\hat{f}(\omega)=\frac{\sqrt{2 \pi} \cosh \omega}{1+e^{2}}
$$

Use this result in order to compute the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}} d x
$$

3 Use the Fourier transform to find functions $u(x, t), x \in \mathbb{R}, t>0$, satisfying the following PDEs:

1. The PDE $u_{t t}=u_{x x}$ with initial conditions

$$
u(x, 0)=\left\{\begin{array}{ll}
x & \text { for }-1<x<1, \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad u_{t}(x, 0)=0 .\right.
$$

2. The PDE $t u_{x}-u_{t}=0$ with initial condition $u(x, 0)=\sin (x)$.
3. The PDE $u_{t t}=2 u_{x x}$ with initial conditions $u(x, 0)=\frac{1}{1+x^{2}}$ and $u_{t}(x, 0)=0$. Recall that $\mathcal{F}\left(\frac{1}{1+x^{2}}\right)=\sqrt{\frac{2}{\pi}} e^{|w|}$.
