In all problems you are supposed to show the details of your work and describe what you are doing.

1 a) Compute the Fourier series of the 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x$ for $-\pi<x<\pi$.
b) Use the Parseval formula to compute

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

2 a) Compute the Fourier coefficients of the 4-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}3 & \text { for }-2<x<0 \\ -1 & \text { for } 0<x<2\end{cases}
$$

b) Compute the Fourier coefficients of the 4π-periodic function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}\sin (x) & \text { for } 0<x<2 \pi \\ 0 & \text { for } 2 \pi<x<4 \pi\end{cases}
$$

3 a) For the function $f(x)=\sin (x)$ defined on the half-period $0<x<\pi$ give the even extension to the full period and compute its Fourier Cosine series.
b) For the function $f(x)=1-x$ defined on the half-period $0<x<2$ give the odd extension to the full period and compute its Fourier Sine series.

4 Find a particular solution of the ODE

$$
y^{\prime \prime}+2 y=r(t)
$$

where $r(t)$ is the 2-periodic function given by

$$
r(t)= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { for } 1<x<2\end{cases}
$$

