sum of this inverse and (7) is the solution of the problem for $0 < t < \pi$, namely (the sines cancel),

$$y(t) = 3e^{-t}\cos t - 2\cos 2t - \sin 2t$$
 if $0 < t < \pi$.

e second fraction in (6), taken with the minus sign, we have the factor $e^{-\pi s}$, so that from (8) and the second ing theorem (Sec. 6.3) we get the inverse transform of this fraction for t > 0 in the form

$$+2\cos(2t - 2\pi) + \sin(2t - 2\pi) - e^{-(t-\pi)} [2\cos(t-\pi) + 4\sin(t-\pi)]$$

= $2\cos 2t + \sin 2t + e^{-(t-\pi)} (2\cos t + 4\sin t)$.

sum of this and (9) is the solution for $t > \pi$,

$$y(t) = e^{-t}[(3 + 2e^{\pi})\cos t + 4e^{\pi}\sin t]$$
 if $t > \pi$.

re 136 shows (9) (for $0 < t < \pi$) and (10) (for $t > \pi$), a beginning vibration, which goes to zero rapidly use of the damping and the absence of a driving force after $t = \pi$.

Fig. 136. Example 4

case of repeated complex factors $[(s-a)(s-\overline{a})]^2$, which is important in connection h resonance, will be handled by "convolution" in the next section.

ET 6.4

fect of Damping. Consider a ur choice modeled by

$$y' + ky = \delta(t)$$
.

e solution, describe the effect of l ig the damping to 0, keeping k

c is kept constant and k is l, starting from 0?

ults to a system with two it, acting at different times.

. Limit of a Rectangular Wave.

the text, take a rectangular wave +k. Graph the responses for a k approaching zero, illustrating maller k those curves approach

the curve shown in Fig. 134. *Hint:* If your CAS gives no solution for the differential equation, involving k, take specific k's from the beginning.

(b) Experiment on the response of the ODE in Example 1 (or of another ODE of your choice) to an impulse $\delta(t-a)$ for various systematically chosen a (> 0); choose initial conditions $y(0) \neq 0$, y'(0) = 0. Also consider the solution if no impulse is applied. Is there a dependence of the response on a? On b if you choose $b\delta(t-a)$? Would $-\delta(t-\widetilde{a})$ with $\widetilde{a}>a$ annihilate the effect of $\delta(t-a)$? Can you think of other questions that one could consider experimentally by inspecting graphs?

3-12 EFFECT OF DELTA (IMPULSE) ON VIBRATING SYSTEMS

Find and graph or sketch the solution of the IVP. Show the details.

3.
$$y'' + 9y = \delta(t - \pi/2)$$
, $y(0) = 2$, $y'(0) = 0$

4.
$$y'' + 16y = 4\delta t$$

5. $y'' + 4y = \delta(t)$

$$y(0) = 0, y'(0)$$

6.
$$y'' + 4y' + 5y$$

7.
$$4y'' + 16y' + y(0) = \frac{3}{5}, y'(0)$$

8.
$$y'' + 3y' + 2y$$

 $y'(0) = -1$

9.
$$y'' + 2y' + 2y'$$

 $y(0) = 0$, $y'(0)$

10.
$$y'' + 5y' + 6y'$$

$$y(0) = 0, y'(0)$$

11. $y'' + 3y' + 2$

12.
$$y'' + 2y' + 5$$

 $y'(0) = 5$

y(0) = 0, y'(0)

(b) Similarly fractions in

$$\frac{F(s)}{G(s)} =$$

we have the

and for the

$$A_k = -$$

14. TEAM PR Functions (a) Theor continuous

(11)

Prove this