PROBLEM SET 11.1

1-5 PERIOD, FUNDAMENTAL PERIOD

The fundamental period is the smallest positive period. Find it for

- 1. $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos \pi x$, $\sin \pi x$, $\cos 2\pi x$, $\sin 2\pi x$
- 2. $\cos nx$, $\sin nx$, $\cos \frac{2\pi x}{k}$, $\sin \frac{2\pi x}{k}$, $\cos \frac{2\pi nx}{k}$,

 $\sin\frac{2\pi nx}{k}$

- 3. If f(x) and g(x) have period p, show that h(x) = af(x) + bg(x) (a, b, constant) has the period p. Thus all functions of period p form a **vector space**.
- **4. Change of scale.** If f(x) has period p, show that f(ax), $a \ne 0$, and f(x/b), $b \ne 0$, are periodic functions of x of periods p/a and bp, respectively. Give examples.
- Show that f = const is periodic with any period but has no fundamental period.

6-10 GRAPHS OF 2π -PERIODIC FUNCTIONS

Sketch or graph f(x) which for $-\pi < x < \pi$ is given as follows.

6.
$$f(x) = |x|$$

7.
$$f(x) = |\sin x|$$
, $f(x) = \sin |x|$

8.
$$f(x) = e^{-|x|}, f(x) = |e^{-x}|$$

9.
$$f(x) = e^{-x}$$
, $f(x) = e^{-x}$ if $-\pi < x < 0$
 $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$

10.
$$f(x) = \begin{cases} -\cos^2 x & \text{if } -\pi < x < 0 \\ \cos^2 x & \text{if } 0 < x < \pi \end{cases}$$

11. Calculus review. Review integration techniques for integrals as they are likely to arise from the Euler formulas, for instance, definite integrals of $x \cos nx$, $x^2 \sin nx$, $e^{-2x} \cos nx$, etc.

12-21 FOURIER SERIES

Find the Fourier series of the given function f(x), which is assumed to have the period 2π . Show the details of your work. Sketch or graph the partial sums up to that including $\cos 5x$ and $\sin 5x$.

12.
$$f(x)$$
 in Prob. 6

13.
$$f(x)$$
 in Prob. 9

13.
$$f(x) = x^2 \quad (-\pi < x < \pi)$$

15.
$$f(x) = x^2$$
 $(0 < x < 2\pi)$

16.

17.

18.

19.

20.

21.

22. CAS EXPERIMENT. Graphing. Write a program for graphing partial sums of the following series. Guess from the graph what f(x) the series may represent. Confirm or disprove your guess by using the Euler formulas.

(a) $2(\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \cdots)$

(a)
$$2(\sin x + \frac{1}{3}\sin 5x + \frac{1}{6}\sin 6x + \frac{1}{6}\sin 6x + \frac{1}{6}\sin 6x + \frac{1}{2}\sin 2x + \frac{1}{4}\sin 4x + \frac{1}{6}\sin 6x + \cdots)$$

(b) $\frac{1}{2} + \frac{4}{\pi^2} \left(\cos x + \frac{1}{9}\cos 3x + \frac{1}{25}\cos 5x + \cdots\right)$

(c) $\frac{2}{3}\pi^2 + 4(\cos x - \frac{1}{4}\cos 2x + \frac{1}{9}\cos 3x - \frac{1}{16}\cos 4x + \cdots)$

- 23. Discontinuities. Verify the last statement in Theorem 2 for the discontinuities of f(x) in Prob. 21.
- 24. CAS EXPERIMENT. Orthogonality. Integrate and graph the integral of the product $\cos mx \cos nx$ (with various integer m and n of your choice) from -a to a as a function of a and conclude orthogonality of $\cos mx$