
The Crank–Nicolson method

November 5, 2015

It is my impression that many students found the Crank–Nicolson method hard to understand. These
notes are intended to complement Kreyszig’s quite messy discussion of the method.

The notes take the same approach as I did in the lecture, i.e. obtaining Crank–Nicolson by transform-
ing the PDE into a system of ODEs and applying a Runge–Kutta method to solve that system.

1 Semidiscretization of the heat equation
The Crank–Nicolson method applies to the heat equation

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡) =

𝜕2𝑢
𝜕𝑥2 𝑢(𝑥, 𝑡) (1)

for (𝑥, 𝑡) ∈ [0, 1] × [0, ∞), and similar parabolic partial differential equations.
Divide [0, 1] into 𝑁 intervals with the nodes 𝑥0, 𝑥1, … , 𝑥u� spaced ℎ apart, i.e. ℎ = 1/𝑁. By applying

the central difference approximation1,

𝜕2𝑢
𝜕𝑥2 𝑢(𝑥, 𝑡) ≈

1
ℎ2 (𝑢(𝑥 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ℎ, 𝑡)),

we turn equation (1) into a system of equations

𝜕𝑢
𝜕𝑡 (𝑖ℎ, 𝑡) ≈

1
ℎ2 (𝑢(𝑖ℎ + ℎ, 𝑡) − 2𝑢(𝑖ℎ, 𝑡) + 𝑢(𝑖ℎ − ℎ, 𝑡))

for 0 < 𝑖 < 𝑁.

If we write 𝑣u�(𝑡) for our approximation of 𝑢(𝑖ℎ, 𝑡), that system can be written

𝑣′u�(𝑡) =
1
ℎ2 (𝑣u�+1(𝑡) − 2𝑣u�(𝑡) + 𝑣u�−1(𝑡))

for 0 < 𝑖 < 𝑁.

In this notation, 𝑣0(𝑡) = 𝑢(0, 𝑡) = 𝐿(𝑡) and 𝑣u�(𝑡) = 𝑢(𝑁ℎ, 𝑡) = 𝑢(1, 𝑡) = 𝑅(𝑡), i.e. the left and the right
boundary conditions, respectively.

With v(𝑡) = (𝑣1(𝑡), 𝑣2(𝑡), … 𝑣u�−1(𝑡)) we can thus write the system as

v′(𝑡) =
1
ℎ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣2(𝑡) − 2𝑣1(𝑡) + 𝐿(𝑡)
𝑣3(𝑡) − 2𝑣2(𝑡) + 𝑣1(𝑡)

⋮
𝑣u�−1(𝑡) − 2𝑣u�−2(𝑡) + 𝑣u�−3(𝑡)

𝑅(𝑡) − 2𝑣u�−1(𝑡) + 𝑣u�−2(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= f(𝑡, v(𝑡)). (2)

Equation (2) is called the semidiscretized form of equation (1), and we now aim to solve it numerically.
Figure 1 summarizes situation.

1As in the lectures: add the Taylor series for u�(u� + ℎ, u�) and for u�(u� − ℎ, u�) so that the odd powers of ℎ drop out, and truncate
above order ℎ2.

1



𝑥

𝑡

0 = 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥u�−1 𝑥u� = 1
0 = 𝑡0

𝑡1

𝑡2

𝑡3

⋮

…

…

…

ℎ

𝑘

Figure 1: Central differences for the spatial second derivatives turns the heat equation (1) into a system
of ODEs (2) along the red lines. This system is solved by stepping forward in time with a Runge–Kutta
method, giving us approximations of the solution 𝑢(𝑖ℎ, 𝑗𝑘) at the nodes (where red and blue lines inter-
sect). Note that in general ℎ ≠ 𝑘, even though the drawing indicates otherwise.

2 Solving equation (2)
Equation (2) can be solved using any Runge–Kutta method for ordinary differential equations. Forward
Euler gives an explicit scheme with stencil2

(𝑖, 𝑗 + 1)

(𝑖, 𝑗)(𝑖 − 1, 𝑗) (𝑖 + 1, 𝑗) ,

while backwards Euler gives an implicit scheme with stencil

(𝑖, 𝑗 + 1)

(𝑖, 𝑗)

(𝑖 − 1, 𝑗 + 1) (𝑖 + 1, 𝑗 + 1)

.

It turns out that in practice, it is very useful to solve equation (2) with another Runge–Kutta method,
which Butcher table is

0 0 0
1 1/2 1/2

1/2 1/2
.

Writing 𝑘 for the temporal step size and now writing time steps with superscripts (i.e. vu� ≈ v(𝑗𝑘)), this
method applied to equation (2) gives the scheme

vu�+1 = vu� +
𝑘
2 f(𝑡u�, vu�) +

𝑘
2 f(𝑡u�+1, vu�+1).

By insering the definition of f from equation (2), the above is written out as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�+1
1

𝑣u�+1
2
⋮

𝑣u�+1
u�−2

𝑣u�+1
u�−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�
1

𝑣u�
2
⋮

𝑣u�
u�−2

𝑣u�
u�−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
𝑘

2ℎ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�
2 − 2𝑣u�

1 + 𝐿(𝑗𝑘)
𝑣u�

3 − 2𝑣u�
2 + 𝑣u�

1
⋮

𝑣u�
u�−1 − 2𝑣u�

u�−2 + 𝑣u�
u�−3

𝑅(𝑗𝑘) − 2𝑣u�
u�−1 + 𝑣u�

u�−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
𝑘

2ℎ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�+1
2 − 2𝑣u�+1

1 + 𝐿((𝑗 + 1)𝑘)
𝑣u�+1

3 − 2𝑣u�+1
2 + 𝑣u�+1

1
⋮

𝑣u�+1
u�−1 − 2𝑣u�+1

u�−2 + 𝑣u�+1
u�−3

𝑅((𝑗 + 1)𝑘) − 2𝑣u�+1
u�−1 + 𝑣u�+1

u�−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

2Beregningsmolekyl or stensil in Norwegian.

2



Rearranging into a matrix equation and abbreviating 𝑟 = 𝑘/ℎ2, we get the tridiagonal linear system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 + 𝑟 −𝑟/2
−𝑟/2 1 + 𝑟 −𝑟/2

−𝑟/2 ⋱ ⋱
⋱ ⋱ −𝑟/2

−𝑟/2 1 + 𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�+1
1

𝑣u�+1
2
⋮

𝑣u�+1
u�−2

𝑣u�+1
u�−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�
1

𝑣u�
2
⋮

𝑣u�
u�−2

𝑣u�
u�−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
𝑟
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣u�
2 − 2𝑣u�

1 + 𝐿(𝑗𝑘) + 𝐿((𝑗 + 1)𝑘)
𝑣u�

3 − 2𝑣u�
2 + 𝑣u�

1
⋮

𝑣u�
u�−1 − 2𝑣u�

u�−2 + 𝑣u�
u�−3

𝑅(𝑗𝑘) + 𝑅((𝑗 + 1)𝑘) − 2𝑣u�
u�−1 + 𝑣u�

u�−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3)
Stepping in time (advancing from one blue line to the next in figure 1) according to equation (3) is the
Crank–Nicolson method, with 𝑣u�

u� the numerical approximation of 𝑢(𝑖ℎ, 𝑗𝑘).

2.1 Some observations
Crank–Nicolson amounts to solving the (𝑁 − 1)-dimensional linear system in equation (3) for each time
step, so the method is implicit. Note however that the matrix is strictly diagonally dominant, so an
iteration technique like Jacobi or Gauss–Seidel can be employed to solve the system. Moreover, the
matrix is the same for each time step, so exact methods can re-use a lot of previously done work (for
example LU factorization) every time step. The fact that the matrix is tridiagonal also opens the door to
a lot of other shortcuts.

The stencil of Crank–Nicolson is

(𝑖, 𝑗 + 1)

(𝑖, 𝑗)

(𝑖 − 1, 𝑗 + 1) (𝑖 + 1, 𝑗 + 1)

(𝑖 − 1, 𝑗) (𝑖 + 1, 𝑗) ,

nicely reflecting the fact that the RK method used is a mixture of forward and backward Euler.

3


	Semidiscretization of the heat equation
	Solving equation (??)
	Some observations


