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During lectures I demonstrated how Euler’s method, a first-order Runge–Kutta method, behaved
when solving

𝑦′(𝑥) = −3𝑦(𝑥).

The solution seemed decent enough with a step size of ℎ = 1/4, but with ℎ = 1 it oscillated wildly
and never settled down. This is in stark contrast to the analytical/exact solution 𝑦(𝑥) = 𝑦(0)𝑒−3u�. The
witnessed behavioral difference between the numerical and the exact solution is one definition of a nu-
merical method being unstable (for a given step size).

1 A test for stability
One can say something about the stability of numerical methods for ODEs in general by studying the
differential equation

𝑦′(𝑥) = 𝜆𝑦(𝑥), (1)

where 𝑦(0) ≠ 0 and 𝜆 is a complex number with strictly negative real part, i.e. Re 𝜆 < 0.
We know that equation (1) has the exact solution

𝑦(𝑥) = 𝑦(0)𝑒u�u� = 𝑦(0)𝑒u� Re u�𝑒u�u� Im u�. (2)

Since Re 𝜆 < 0, the solution will be dampened by the first exponential factor, and we therefore have

limu�→∞ 𝑦(𝑥) = 0.

One measure of stability is then to demand that that our numerical solution, denoted 𝑦0, 𝑦1, … , 𝑦u�, … ,
behaves in the same way when we solve equation (1), i.e. we want

limu�→∞ 𝑦u� = 0.

In our context, we will say that a method is stable (for a given 𝜆 and a given step size) if limu�→∞ 𝑦u� = 0.
We have seen during lectures that Euler’s method is not stable in the case when 𝜆 = −3 and ℎ = 1.

2 The stability regions of Runge–Kutta methods
The above definition of stability can be applied to and investigated for any Runge–Kutta method. In the
following we consider equation (1) with 𝜆 ∈ ℂ and Re 𝜆 < 0.

2.1 Euler’s method
For equation (1), Euler’s method becomes

𝑦u�+1 = 𝑦u� + ℎ𝑓 (𝑥u�, 𝑦u�) = 𝑦u� + ℎ𝜆𝑦u� = (1 + ℎ𝜆)𝑦u�.

Applied 𝑛 ≥ 0 times, we find
𝑦u� = (1 + ℎ𝜆)u�𝑦0.
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From complex analysis we know that limu�→∞ 𝑦u� = 0, with 𝑦u� as above, if and only if

|1 + ℎ𝜆| < 1.

This holds if and only if ℎ𝜆 (which is a complex number) lies in a disk of radius 1 centered at −1 + 0i in
the complex plane.

Suppose we are given a 𝜆 (with Re 𝜆 < 0). In order to be guaranteed stability, we must thus choose a
step size ℎ that is small enough that ℎ𝜆 lies inside said disk in the complex plane. It could happen that we
must choose ℎ tiny, with the downside that we have to do very many steps to get to the 𝑦u� = 𝑦(𝑥0 + 𝑛ℎ)
we are interested in.

2.2 Other Runge–Kutta methods
The analysis above can be carried out for all Runge–Kutta methods, including the four that we have seen
in the course: Euler, improved Euler (Heun), RK4, and backwards Euler. Figure 1 shows the result, i.e.
the regions of stability for the various methods. You are encouraged to do the analysis above on your own
for all these methods (especially for backwards Euler, for reasons that will soon become clear).

Notice how backwards Euler is stable for ℎ𝜆 in the entire left half plane (gray area in figure 1). A
method with this property is said to be absolutely stable. With absolutely stability, the solution we get
from the method will converge to 0 (as the exact one does) nomatter how large a step size we choose!
Such a stability property is typical of implicit methods, of which backwards Euler is the only example
we have covered.

The other methods, which are explict ones, have finite stability regions. Also in those cases there are
differences to note: If 𝜆 has a real part very close to 0 (corresponding to the exact solution in equation (2)
being very slow in its decay) and a large imaginary part (corresponding to a highly oscillating exact
solution), then we must choose ℎ extremely small for ℎ𝜆 to end up in Euler’s method’s (blue) or Heun’s
method’s (turquoise) stability regions. On the other hand, RK4’s region (red) is somewhat easier to reach
with a larger ℎ.
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Figure 1: Stability regions for some Runge–Kutta methods. With ℎ𝜆 in the gray region backwards Euler
is stable, in the red region RK4 is stable, in the yellow region a third-order RK method (which we have
not looked at) is stable, in the turquoise/green region improved Euler (Heun) is stable, and in the blue
region Euler is stable (as we just showed). Note that some of the red cover the gray, some of the yellow
cover the red, and so on.
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