
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Numerical solution of nonlinear equations

Anne Kværnø

Oct 23, 2018

The Python codes for this note are given in nonlinearequations.py.

1 Introduction

We will start by considering some numerical techniques for solving nonlinear scalar equations (one equation,
one unknown), such as, for example

x3 + x2 − 3x = 3.

or systems of equations, such as, for example

xey = 1,
−x2 + y = 1.

NB!

• Refer to section 3.1 in Preliminaries for some general comments on convergence.

• There are no examples of numerical calculations done by hand in this note. If you would like some,
you can easily generate them yourself. Take one of the computer exercises, do your calculations by
hand, if needed modify the code so that you get the output you want, run the code, and compare
with the results you got by your pencil and paper calculation.

2 Scalar equations

In this section we discuss the solution of scalar equations. The techniques we will use are known from
previous courses. When they are repeated here, it is because the techniques used to develope and analyse
these methods can, at least in principle be extended to systems of equations. We will also emphasise the
error analysis of the methods.

A scalar equation is given by

f(x) = 0, (1)

where f is a continuous function defined on some interval [a, b]. A solution r of the equation is called a
zero or a root of f . A nonlinear equation may have one, more than one or none roots.

Example 1: Given the function f(x) = x3 + x2 − 3x− 3 on the interval [−2, 2]. Plot the function on
the interval, and locate possible roots.

See example1 in nonlinearequations.py.

According to the plot, the function f has three real roots in the interval [−2, 2].

The function can be rewritten as

f(x) = x3 + x2 − 3x− 3 = (x+ 1)(x2 − 3).

Thus the roots of f are −1 and ±
√

3. We will use this example as a test problem later on.

2.1 Existence and uniqueness of solutions

The following theorem is well known:

Theorem 1: Existence and uniqueness of a solution.

• If f ∈ C[a, b] with f(a) and f(b) of opposite sign, there exist at least one r ∈ (a, b) such that
f(r) = 0.

• The solution is unique if f ∈ C1[a, b] and f ′(x) > 0 or f ′(x) < 0 for all x ∈ (a, b).

The first condition guarantees that the graph of f will pass the x-axis at some point r, the second
guarantees that the function is either strictly increasing or strictly decreasing.

2.2 Bisection method

The first part of the theorem can be used to construct the first, quite intuitive algorithm for solving scalar
equations. Given an interval, check if f has a root in the interval, divide it in two, check in which of the
two halfs the root is, and continue until a root is located with sufficient accuracy.

Bisection method.

• Given the function f and the interval [a, b], such that f(a) · f(b) < 0.

• Set a0 = a, b0 = b.

• For k = 0, 1, 2, 3,

ck = ak + bk
2

[ak+1, bk+1] =
{

[ak, ck] if f(ak) · f(ck) ≤ 0
[ck, bk] if f(bk) · f(ck) ≤ 0

Use ck as the approximation to the root. Since ck is the midpoint of the interval [ak, bk], the error satisfies
|ck − r| ≤ (bk − ak)/2. The loop is terminated when (bk − ak)/2 is smaller than some user specified
tolerance. We will of course also terminate the loop if f(ck) is very close to 0.

Implementation. The algorithm is implemented in the function bisection(). See the function
bisection() in nonlinearequations.py.

2

Example 2: Use the code above to find the root of f(x) = x3 + x2 − 3x− 3 in the interval [1.5, 2]. Use
10−6 as the tolerance.

See the function example2 in nonlinearequations.py.

Control that the numerical result is within the error tolerance:

Exercises:

1. Choose some appropriate intervals and find the two other roots of f .

2. Compute the solution(s) of x2 + sin(x)− 0.5 = 0 by the bisection method.

3. Given a root in the interval [1.5, 2]. How many iterations are required to guarantee that the error is
less than 10−4.

2.3 Fixed point iterations

The bisection method is very robust, but not particular fast. We will now discuss a major class of iteration
schemes, e.g. the so-called fixed point iterations. The idea is:

• Given a scalar equation f(x) = 0 with a root r.

• Rewrite the equation in the fixed point form x = g(x) such that the root r of f is a fixed point of g,
that is, r satisfies r = g(r).

The fixed point iterations are then given by

Fixed point iterations.

• Given g and a starting value x0.

• For k = 0, 1, 2, 3, . . .

xk+1 = g(xk)

Implementation. The fixed point scheme is implemented in the function fixpoint. The iterations are
terminated when either the error estimate |xk+1 − xk| is less than a given tolerance tol, or the number of
iterations reaches some maximum number max_iter.

See the function fixpoint in nonlinearequations.py.

Example 3: The equation

x3 + x2 − 3x− 3 = 0 can be rewritten as x = x3 + x2 − 3
3 .

The fixed points are the intersections of the two graphs y = x and y = x3+x2−3
3 , as can be demonstrated

by the following script:

See the function example3 in nonlinearequations.py. We observe that the fixed points of g are the
same as the zeros of f .

Apply fixed point iterations on g(x). Aim for the fixed point between 1 and 2, so choose x0 = 1.5. Do the it-
erations converge to the root r =

√
3? See the function example3_iter in nonlinearequations.py.

3

Exercises: Repeat the experiment with the following reformulations of f(x) = 0:

x = g2(x) = −x
2 + 3x+ 3
x2 ,

x = g3(x) = 3
√

3 + 3x− x2,

x = g4(x) =
√

3 + 3x− x2

x

Use x0 = 1.5 in your experiments, you may well experiment with other values as well.

2.4 Theory

Let us first state some existence and uniqueness results. Apply Theorem 1 in this note on the equation
f(x) = x− g(x) = 0. The following is then given (the details are left to the reader):

• If g ∈ C[a, b] and a < g(x) < b for all x ∈ [a, b] then g has at least one fixed point r ∈ (a, b).

• If in addition g ∈ C1[a, b] and |g′(x)| < 1 for all x ∈ [a, b] then the fixed point is unique.

In the following, we will write the assumption a < g(x) < b for all x ∈ [a, b] as g([a, b]) ⊂ (a, b).

In this section we will discuss the convergence properties of the fixed point iterations, under the conditions
for existence and uniqueness given above.

The error after k iterations are given by ek = r − xk. The iterations converge when ek → 0 as k →∞.
Under which conditions is this the case?

This is the trick: For some arbitrary k we have

xk+1 = g(xk), the iterations
r = g(r). the fixed point

Take the difference between those and use the mean value theorem (Result 3 in section 5 in Preliminaries),
and finally take the absolute value of each expression in the sequence of equalities:

|ek+1| = |r − xk+1| = |g(r)− g(xk)| = |g′(ξk)| · |r − xk| = |g′(ξk)| · |ek|. (2)

Here ξk is some unknown value between xk (known) and r (unknown). We can now use the assumptions
from the existence and uniqueness result.

• The condition g([a, b]) ⊂ (a, b) guarantees that if x0 ∈ [a, b] then xk ∈ (a, b) for k = 1, 2, 3,

• The condition g′(x) ≤ L < 1 guarantees convergence towards the unique fixed point r, since

|ek+1| ≤ L |ek| ⇒ |ek| ≤ Lk |e0| → 0 as k →∞,

and Lk → 0 as k →∞ when L < 1.

In summary we have

The fixed point theorem.

If there is an interval [a, b] such that g ∈ C1[a, b], g([a, b]) ⊂ (a, b) and there exist a positive constant
L < 1 such that |g′(x)| ≤ L < 1 for all x ∈ [a, b] then

• g has a unique fixed point r in (a, b).

• The fixed point iterations xk+1 = g(xk) converges towards r for all starting values x0 ∈ [a, b].

From the discussion above, we can draw some conclusions:

4

• The smaller the constant L, the faster the convergence.

• If |g′(r)| < 1 then there will always be a neighbourhood around r, (r− δ, r + δ) for some δ on which
all the conditions are satisfied. Meaning that the iterations will always converge if x0 is sufficiently
close to r.

• If |g′(r)| > 1 the fixed point iterations will never converge towards r.

Example 3 revisited: Use the theory above to analyse the iteration scheme from Example 3, where

g(x) = x3 + x2 − 3
3 , g′(x) = 3x2 + 2x

3

It is clear that g is differentiable. We already know that g has three fixed points, r = ±
√

3 and r = −1.
For the first two, we have that g′(

√
3) = 3+ 2

3
√

3 = 4.15 and g′(−
√

3) = 3− 2
3
√

3 = 1.85, so the fixed point
iterations will never converges towards those roots. But g′(−1) = 1/3, so we get convergence towards this
root, given sufficiently good starting values. The figure below demonstrates that the assumptions of the
theorem are satisfied in some region around x = −1, for example [−1.3,−0.7].

See example3_revisited in nonlinearequations.py. The plot to the left demonstrates the assumption
g([a, b]) ⊂ (a, b), as the graph y = g(x) enters at the left boundary and exits at the right and does not
leave the region [a, b] anywhere in between. The plot to the right shows that |g′(x)| <= g′(a) = L < 1 is
satisfied in the interval.

Exercises:

1. See how far the interval [a, b] can be stretched, still with convergence guaranteed.

2. Do a similar analysis on the three other iteration schemes suggested above, and confirm the results
numerically. The schemes are:

x = g2(x) = −x
2 + 3x+ 3
x2 ,

x = g3(x) = 3
√

3 + 3x− x2,

x = g4(x) =
√

3 + 3x− x2

x

Insert your code here.

2.5 Newton’s method

Based on the previous discussion, it is clear that fast convergence can be achieved if g′(r) is as small as
possible, preferable g′(r) = 0. Can this be achieved for a general problem?

We have that xk = r − ek where ek is the error in iteration k. Do a Taylor expansion (Preliminaries,
section 4) of g(xk) around r:

ek+1 = r − xk+1 = g(r)− g(xk) = g(r)− g(r − ek) = −g′(r)ek + 1
2g
′′(ξk)e2

k (3)

If g′(r) = 0 and there is a constant M such that |g′′(x)|/2 ≤M , then

|ek+1| ≤M |ek|2

and quadratic convergence has been achieved, see Preliminaries, section 3.1 on "Convergence of an iterative
process".

5

Question: Given the equation f(x) = 0 with an unknown solution r. Can we find a g with r as a fixed
point, satisfiying g′(r) = 0?

Idea: Let

g(x) = x− h(x)f(x).

for some function h(x). Independent of the choice of h(x), r will be a fixed point of g. Choose h(x) such
that g′(r) = 0, that is

g′(x) = 1− h′(x)f(x)− h(x)f ′(x) ⇒ g′(r) = 1− h(r)f ′(r)

By choosing h(x) = 1/f ′(x) the aim g′(r) = 0 is achieved. The result is

Newton’s method.
• Given f and a starting value x0.

• For k = 0, 1, 2, 3, . . .

xk+1 = xk −
f(xk)
f ′(xk)

Implementation. The method is implemented in the function newton(). The iterations are terminated
when |f(xk)| is less than a given tolerance.

See newton() in nonlinearequations.py.

Example 4: Solve f(x) = x3 + x2 − 3x− 3 = 0 by Newton’s method. Choose x0 = 1.5. The derivative
of f is f ′(x) = 3x2 + 2x− 3.

See example4 in nonlinearequations.py.

Error analysis. The method was constructed to give quadratic convergence, that is

|ek+1| ≤M |ek|2,

where ek = r − xk is the error after k iterations. But under which conditions is this true, and can we say
something about the size of the constant M?

By a Taylor expansion of f(r) around xk, we get:

0 = f(r) = f(xk) + f ′(xk)(r − xk) + 1
2f
′′(ξk)(r − xk)2 (Taylor series)

0 = f(xk) + f ′(xk)(xk+1 − xk) (Newton’s method)

where ξk is between r and xk.

Subtract the two equations to get

f ′(xk)(r − xk+1) + 1
2f
′′(ξk)(r − xk)2 = 0 ⇒ ek+1 = −1

2
f ′′(ξk)
f ′(xk) e

2
k

So we obtain quadratic convergence if f is twice differentiable around r, f ′(xk) 6= 0, and x0 is chosen
sufficiently close to r. More precise:

6

Theorem: Convergence of Newton iterations.

Assume that the function f has a root r, and let Iδ = [r − δ, r + δ] for some δ > 0. Assume further
that

• f ∈ C2(Iδ).

• There is a positive constant M such that∣∣∣∣f ′′(y)
f ′(x)

∣∣∣∣ ≤ 2M, for all x, y ∈ Iδ.

In this case, Newton’s iterations converge quadratically,

|ek+1| ≤M |ek|2

for all starting values satisfying |x0 − r| ≤ min{1/M, δ}.

Exercises:

1. Repeat Example 4 using different starting values x0. Find the two other roots.

2. Verify quadratic convergence numerically. How to do so is explained in Preliminaries, section 3.1.

3. Solve the equation x(1− cos(x)) = 0, both by the bisection method and by Newton’s method with
x0 = 1. Comment on the result.

3 System of nonlinear equations

In this section we will discuss how to solve systems of non-linear equations, given by

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

or short by
f(x) = 0.

where f : Rn → Rn.

Example 5: Given the two equations

x3
1 − x2 + 1

4 = 0

x2
1 + x2

2 − 1 = 0

This can be illustrated by example5_graphs in nonlinearequations.py.

The solutions of the two equations are the intersections of the two graphs. So there are two solutions, one
in the first and one in the third quadrant.

We will use this as a test example in the sequel.

7

3.1 Newton’s method for systems of equations

The idea of fixed point iterations can be extended to systems of equations. But it is in general hard
to find convergent schemes. So we will concentrate on the extension of Newton’s method to systems of
equations. And for the sake of illustration, we only discuss systems of two equations and two unknowns
written as

f(x, y) = 0
g(x, y) = 0

to avoid getting completely lost in indices.

Let r = [rx, ry]T be a solution to these equations and some x̂ = [x̂, ŷ]T a known approximation to r. We
search for a better approximation. This can be done by replacing the nonlinear equation f(x) = 0 by its
linear approximation. Which can be found by a multidimensional Taylor expansion around x̂.

f(x, y) = f(x̂, ŷ) + ∂f

∂x
(x̂, ŷ)(x− x̂) + ∂f

∂y
(x̂, ŷ)(y − ŷ) + . . .

g(x, y) = g(x̂, ŷ) + ∂g

∂x
(x̂, ŷ)(x− x̂) + ∂g

∂y
(x̂, ŷ)(y − ŷ) + . . .

where the . . . represent higher order terms, which are small if x̂ ≈ x. By ignoring these terms we get a
linear approximation to f(x), and rather than solving the nonlinear original system, we can solve its linear
approximation:

f(x̂, ŷ) + ∂f

∂x
(x̂, ŷ)(x− x̂) + ∂f

∂y
(x̂, ŷ)(y − ŷ) = 0

g(x̂, ŷ) + ∂g

∂x
(x̂, ŷ)(x− x̂) + ∂g

∂y
(x̂, ŷ)(y − ŷ) = 0

or more compact

f(x̂) + J(x̂)(x− x̂) = 0,

where the Jacobian J(x) is given by

J(x) =
(

∂f
∂x (x, y) ∂f

∂y (x, y)
∂g
∂x (x, y) ∂g

∂y (x, y)

)

It is to be hoped that the solution of the linear equation x provides a better approximation to r than our
initial guess x̂, so the process can be repeated, resulting in

Newton’s method for system of equations.

• Given a function f(x), its Jacobian J(x) and a starting value x0.

• For k = 0, 1, 2, 3, . . .

Solve the system J(xk)∆k = −f(xk).

Let xk+1 = xk + ∆k.

The strategy can be generalized to systems of n equations in n unknowns, in which case the Jacobian is
given by:

J(x) =

∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
...

∂fn

∂x1
(x) ∂fn

∂x2
(x) · · · ∂fn

∂xn
(x)

8

Implementation. Newton’s method for system of equations is implemented in the function newton_system.
The numerical solution is accepted when all components of f(xk) are smaller than a tolerance in absolute
value, that means when ‖f(xk)‖∞ < tol. See Preliminaries, section 1 for a description of norms.

See the function newton_sys in nonlinearequations.py.

Example 6: Solve the equations from Example 5 by Newton’s method. The vector valued function f
and the Jacobian J are in this case

f(x) =
(
x3

1 − x2 + 1
4

x2
1 + x2

2 − 1

)
and J(x) =

(
3x2

1 −1
2x1 2x2

)
We already know that the system has 2 solutions, one in the first and one in the third quadrant. To find
the first one, choose x0 = [1, 1]T as starting value.

See the function example6 in nonlinearequations.py.

Exercises:

1. Search for the solution of Example 5 in the third quadrant by changing the initial values.

2. Apply Newton’s method to the system

xey = 1
−x2 + y = 1 , using x0 = y0 = 0.

Final remarks. A complete error and convergence analysis of Newton’s method for systems is far from
trivial, and outside the scope of this course. But in summary: If f is sufficiently differentiable, and there
is a solution r of the system f(x) = 0 and with J(r) nonsingular, then the Newton iterations will converge
quadratically towards r for all x0 sufficiently close to r.

Finding solutions of nonlinear equations is difficult. Even if the Newton iterations in principle will converge,
it can be very hard to find sufficient good starting values. Nonlinear equations can have none or many
solutions. Even when there are solutions, there is no guarantee that the solution you find is the one you
want.

If n is large, each iteration is computationally expensive since the Jacobian is evaluated in each iteration.
In practice, some modified and more efficient version of Newton’s method will be used, maybe together
with more robust but slow algorithms for finding sufficiently good starting values.

9

	Introduction
	Scalar equations
	Existence and uniqueness of solutions
	Bisection method
	Fixed point iterations
	Theory
	Newton's method

	System of nonlinear equations
	Newton's method for systems of equations

