
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Numerical solution of ordinary differential equations

Anne Kværnø

Dec 10, 2018

1 Introduction

The topic of this note is the numerical solution of systems of ordinary differential equations (ODEs). This
has been discussed in previous courses, see for instance the webpage Differensialligninger from Mathematics
1.

Scalar ODEs. A scalar ODE is an equation on the form

y′(x) = f(x, y(x)), y(x0) = y0,

where y′(x) = dy
dx . The inital condition y(x0) = y0 is required for a unique solution.

NB! It is common to use the term initial value problem (IVP) for an ODE for which the inital value
y(x0) = y0 is given, and we only are interested in the solution for x > x0. In this note, only initial value
problems are considered.

Example 1: Given the ODE
y′(x) = −2xy(x).

The solution of this equation is

y(x) = Ce−x2
,

where C is a constant. To get a unique solution, we need to decide on one point of the solution, for
instance y(0) = 1, which then allows to fix C and yields the solution

y(x) = e−x2
,

Systems of ODEs. A system of m ODEs are given by

y′1 = f1(x, y1, y2, . . . , ym), y1(x0) = y1,0

y′2 = f2(x, y1, y2, . . . , ym), y2(x0) = y2,0

...
...

y′m = fm(x, y1, y2, . . . , ym), ym(x0) = ym,0

or more compactly by

https://wiki.math.ntnu.no/tma4100/tema/differentialequations

y′(x) = f(x,y(x)), y(x0) = y0

where we use boldface to denote vectors in
mathbbRm.

y(x) =


y1(x)
y2(x)

...
ym(x)

 , f(x,y) =


f1(x, y1, y2, . . . , ym),
f2(x, y1, y2, . . . , ym),

...
fm(x, y1, y2, . . . , ym),

 , y0 =


y1,0

y2,0
...

ym,0

 ,

Example 2: The Lotka-Volterra equation is a system of two ODEs describing the interaction between
preys and predators over time. The system is given by

y′(x) = αy(x)− βy(x)z(x)
z′(x) = δy(x)z(x)− γz(x)

where x denotes time, y(x) describes the population of preys and z(x) the population of predators. The
parameters α, β, δ and γ depends on the populations to be modelled.

Higher order ODEs. An initial value ODE of order m is given by

u(m) = f(x, u, u′, . . . , u(m−1)), u(x0) = u0, u′(x0) = u′0, . . . , u(m−1)(x0) = u
(m−1)
0 .

Here u(1) = u′ and u(m+1) = du(m)

dx , for m > 0.

Example 3: Van der Pol’s equation is a second order differential equation, given by:

u(2) = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0.

where µ > 0 is some constant. As initial values u0 = 2 and u′0 = 0 are common choices.

Later in the note we will see how such equations can be rewritten as a system of first order ODEs. Systems
of higher order ODEs can be treated similarly.

2 Numerical methods for solving ODEs

In this note some techniques for solving ordinary differential equations will be discussed. For simplicity,
the methods will be developed based on scalar ODEs, but the results are equally valid for systems of
equations. All the methods are onestep methods. Given the ODE and the intial values (x0, y0). Choose
some step size h, and let x1 = x0 + h. Based on this information, a onestep method is used to calculate
an approximation y1 to y(x1). And then the process can be repeated from (x1, y1) to (x2, y2), where
x2 = x1 + h and y2 is the calculated approximation to y(x2). This process is repeated until some final
point, here called xend is reached.

It should be emphasized that this strategy only will find approximations to the exact solution in some
discrete points xn, n = 0, 1, . . . ,.

2

https://en.wikipedia.org/wiki/Lotka\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Volterra_equations
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator

3 Euler’s method

Let us start with the simplest example, Euler’s method, known from Mathematics 1.

Given an IVP:

y′(x) = f(x, y(x)), y(x0) = y0.

Choose some step size h. The trick is as follows:

Do a Taylor expansion (Preliminaries, section 4) of the exact (but unknown) solution y(x0 + h) around
x0:

y(x0 + h) = y(x0) + hy′(x0) + 1
2h

2y′′(x0) + · · · .

Assume the step size h to be small, such that the solution is dominated by the first two terms. In that
case, these can be used as the numerical approximation in the next step:

y(x0 + h) ≈ y(x0) + hy′(x0) = y0 + hf(x0, y0)

giving

y1 = y0 + hf(x0, y0).

Repeating this results in

Euler’s method.

• Given a function f(x, y) and an initial value (x0, y0).

• Choose a step size h.

• For i = 0, 1, 2, . . .

yn+1 = yn + hf(xn, yn)

xn+1 = xn + h.

4 Implementation

We would like to make this implementation more like a test platform. It should be simple to implement
and test methods other than Euler’s. That is why the implementaion here is divided in two parts:

• ode_solver: This is a generic solver, and can be used by other methods than Euler’s.

• euler: This function does one step of Euler’s method.

The function method, doing one step with a given method can be changed, but the call of the function
has to be of the form:

x_next, y_next = method(f, x, y, h).

3

https://wiki.math.ntnu.no/tma4100/tema/differentialequations?&#numeriske_losninger

Numerical example 1: Test the implementation of Euler’s method on the problem

y′(x) = −2xy(x), y(0) = 1, 0 ≤ x ≤ 1,

for which the exact solution

y(x) = e−x2
.

Try with different step sizes, for instance h = 0.1, h = 0.05 and h = 0.01. In each case, compare the
numerical solution with the exact one.

The following script solves the equation numerically. See the function num_ex1() in ode.py.

Numerical exercise 1: Repeat the example on a logistic equation, given by

y′ = y(1− y), y(0) = y0,

on the interval [0, 10]. Use y0 = 0.1 as initial value. For comparision, the exact solution is

y(x) = 1
1− (1− 1

y0
)e−x

.

Solve the equation numerically by using different step sizes h, and try different initial values.

4.1 Systems of ODEs

Euler’s method works equally well for systems of m ODEs

y′(x) = f(x,y(x)), y(x0) = y0

Euler’s method is now defined to be

yn+1 = yn + hf(xn,yn), n = 0, . . . , N − 1.

The implementation above can be used without any changes. The only difference from the scalar ODE
case is that yn ∈ Rm and f : R× Rm → Rm. Meaning that the function in which the right hand side of
the ODE is defined takes a scalar x and an array of length m, yn as inputs, and returns an array of length
m.

Numerical example 2: Solve the Lotka-Volterra equation

y′1(x) = αy1(x)− βy1(x)y2(x), y1(0) = y1,0,

y′2(x) = δy1(x)y2(x)− γy2(x), y2(0) = y2,0.

In this example, use the parameters and initial values

α = 2, β = 1, δ = 0.5, γ = 1, y1,0 = 2, y2,0 = 0.5.

Solve the equation over the interval [0, 20], and use h = 0.02. Try also other step sizes, e.g. h = 0.1 and
h = 0.002.

NB! In this case, the exact solution is not known. What is known is that the solutions are periodic and
positive. Is this the case here? Check for different values of h.

See the function num_ex2() in ode.py.

4

https://en.wikipedia.org/wiki/Logistic_function#Applications

4.2 Higher order ODEs

What about higher order ODEs? Can they be solved by Euler’s method as well?

Given the m-th order ODE

u(m)(x) = f
(
x, u(x), u′(x), . . . , u(m−1)).

For a unique solution, we assume that the initial values

u(x0), u′(x0), u′′(x0), . . . , u(m−1)(x0)

are known. Such equations can be written as a system of first order ODEs by the following trick:

Let

y1(x) = u(x), y2(x) = u′(x), y3(x) = u(2)(x), . . . , ym(x) = u(m−1)(x)

such that

y′1 = y2, y1(a) = u(a)
y′2 = y3, y2(a) = u′(a)
...

...
y′m−1 = ym, ym−1(a) = u(m−2)(a)
y′m = f(x, y1, y2, · · · , ym−1, ym), ym(a) = u(m−1)(a)

which is nothing but a system of first order ODEs, and can be solved by Euler’s method exactly as
before.

Numerical example 3: The Van der Pol oscillator is described by the second order differential
equation

u′′ = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0.

It can be rewritten as a system of first order ODEs:

y′1 = y2, y1(0) = u0,

y′2 = µ(1− y2
1)y2 − y1, y2(0) = u′0.

Let µ = 2, u(0) = 2 and u′(0) = 0 and solve the equation over the interval [0, 20], using h = 0.1. Play
with different step sizes, and maybe also with different values of µ.

See the function num_ex3() in ode.py.

5 Error analysis

When an ODE is solved by Euler’s method over some interval [x0, xend], how will the error at xend (or
some arbitrary point) depend on the number of steps. Or more spesific, choose the number of steps N , let
the step size be h = (xend − x0)/N , what can we say about the error eN = y(xend)− yN?

5

Numerical example 4: Solve the equation of Example 1,

y′(x) = −2xy(x), y(0) = 1,

with exact solution y(x) = e−x2 , over the interval [0, 1]. Use different step sizes h, and for each h, measure
the error at x = 1.

See the function num_ex4() in ode.py.

The table generated from this code shows that whenever the step size is reduced with a factor of 0.5, so is
the error. Therefore, we expect

|y(xend)− yN | ≈ Ch, h = xend − x0

N
.

The method seems to be of order 1, see Preliminaries, section 3.1.

In the following we will prove that this is in fact the case. The error analysis will be done on a scalar
equation, but it can as well be extended to systems of equations.

5.1 Local and global errors

In this discussion we have to consider two kinds of errors:

• Local truncation error dn+1: This is the error done on one step, starting from (xn, y(xn)).

• Global error en: This is the difference between the exact and the numerical solution after n steps,
that is en = y(xn)− yn.

In the following, we will see how to express the local truncation error, and we will see how the global and
the local errors are related. We will use all this to find an upper bound for the global error at the end
point xN = xend. The technique described here is quite standard for these kinds of error analysis.

Let us start with the local truncation error. Euler’s method is nothing but the first two terms of the
Taylor expansion of the exact solution. As a consequence, the local truncation error is the remainder term
R2(x) (see Preliminaries, section 4).

dn+1 = y(xn + h)−
(
y(xn) + hy′(xn)

)
= 1

2h
2y′′(ξ), ξ ∈ (xn, xn + h).

Next, use the fact that y′(xn) = f(xn, y(xn)) we have the following two expressions:

y(xn + h) = y(xn) + hf(xn, y(xn)) + dn+1, the equation above
yn+1 = yn + hf(xn, yn), Euler’s method

Subtract the second from the first, and use that en = y(xn) − yn, and use Result 3 in Preliminaries,
section 5:

en+1 = en + h
(
f(xn, y(xn))− f(xn, yn)

)
+ dn+1 = en + hfy(xn, η)en + dn+1,

where fy = ∂f
∂y , and η is some value between yn and y(xn). Take the absolute value on each side, and

apply the triangle inequality:

|en+1| = |en + hfy(xn, η)en + dn+1| < |en|+ h|fy(xn, η)||en|+ |dn+1|.

Assume now that there exist positive constants D and L satisfying

|fy(x, y)| ≤ L and |y′′(x)| ≤ 2D,

6

for all values of x, y. From the inequality above we get

|en+1| < (1 + hL)|en|+Dh2.

Since y0 = y(x0) we get e0 = 0. The inequality above results in

|e1| ≤ Dh2

|e2| ≤ (1 + hL)|e1|+Dh2 ≤
(
(1 + hL) + 1

)
Dh2

|e3| ≤ (1 + hL)|e2|+Dh2 ≤
(
(1 + hL)2 + (1 + hL) + 1

)
Dh2

...

|eN | ≤ (1 + hL)|e2|+Dh2 ≤
N−1∑
n=0

(1 + hL)nDh2

We will now apply two well known results:

• The sum of a truncated geometric series:
N−1∑
n=0

rn = rN − 1
r − 1 for r ∈ R.

• The series of the exponential:

ex = 1 + x+ 1
2x

2 + · · · = 1 + x+
∞∑

n=2

xn

n!

which proves that 1 + x < ex whenever x > 0.

Using these results, we can show the following:

N−1∑
n=0

(1 + hL)n = (1 + hL)N − 1
(1 + hL)− 1 ≤

(ehL)N − 1
hL

= ehLN − 1
hL

= eL(xend−x0) − 1
hL

,

where the last equality is because (xend − x0) = hN . Plug this into the inequality for |eN | above, and the
following upper bound for the global error has been proved:

|y(xend)− yN | = |eN | ≤
eL(xend−x0) − 1

L
Dh = Ch,

where the constant C = eL(xend−x0)−1
L D depends on the length of the integration interval xend − x0, of

certain properties of the equation (L and D), but not on the step size h.

The numerical solution converges to the exact solution since

lim
N→∞

|eN | = 0.

If the step size is reduced by a factor of 0.5, so will the error. Therefore our theory is in coincidence with
the previous numerical result.

5.2 A general convergence result

A one-step method applied to a system of ODEs y′(x) = f(x,y(x)) can be written in the following generic
form

yn+1 = yn + hΦ(xn,yn;h).
where the increment function Φ typically depend on the function f and some parameters defining the
method.

7

Definition: Order of a method.
A method is of order p if there is a constant C such that

‖eN‖ = ‖y(xend)− yN‖ ≤ Chp,

where N is the number of steps taken to reach xend, using step size h = (xend − x0)/N .

The local truncaton error dn+1 of this method is

dn+1 = y(xn+1)− (y(xn) + hΦ(xn,y(xn);h))

Replace the absolute values in the above proof with norms (Preliminaries, section 1), and the above
argument can be used to prove the following:

Theorem: Convergence of one-step methods.

Assume that there exist positive constants M and D such that the increment function satisfies

‖Φ(x,y;h)−Φ(x, z;h)‖ ≤M‖y− z‖

and the local trunctation error satisfies

‖y(x+ h)− (y(x) + hΦ(x,y(x), h)) ‖ ≤ Dhp+1

for all x, y and z in the neighbourhood of the solution. In that case, the global error satisfies

‖eN‖ = ‖y(xend)− yN‖ ≤ Chp, C = eM(xend−x0) − 1
M

D.

It can be proved that the first of these conditions are satisfied for all the methods that will be considered
here.

Heun’s method. There are better methods than Euler’s, and here we will discuss one. Given an
ODE

y′(x) = f(x,y(x)).

The exact solution y(x) of the ODE can be written in integral form as:

y(xn + h) = y(xn) +
∫ xn+h

xn

f(x,y(x))dx.

Solve the integral by the trapezoidal rule for integrals:

y(xn + h) ≈ y(xn) + h

2
(
f(xn,y(xn)) + f(xn+1,y(xn+1)

)
.

Replace y(xn) and y(xn+1) by the approximations yn and yn+1. The resulting method is the trapezoidal
rule for ODEs, given by

yn+1 = yn + h

2
(
f(xn,yn) + f(xn+1,yn+1)

)
.

8

This is an example of an implicit method: If xn,yn is known, a nonlinear equation has to be solved to
find yn+1, and this has to be done for each step. To avoid this, we can approximate yn+1 in the right
hand side of the solution by one step of Euler’s method, resulting in Heun’s method:

un+1 = yn + hf(xn,yn),

yn+1 = yn + h

2
(
f(xn,yn) + f(xn+1,un+1)

)
.

The method is commonly written in the form

k1 = f(xn,yn),
k2 = f(xn + h,yn + hk1),

yn+1 = yn + h

2 (k1 + k2).

The increment function for this method is

Φ(x,y;h) = 1
2
(
f(x,y) + f(x+ h,y + f(x,y))

)
.

Implementation. One step of Heuns’s method is implemented as follows:

Numerical example 5: Let us compare the numerical solution from Euler’s and Heun’s methods on
the scalar test problem

y′ = −2xy, y(0) = 1

with the exact solution y(x) = e−x2 on the interval [0, 1]. Use h = 0.1 for Euler’s method and h = 0.2
for Heun’s metode. Thus both require a total of 10 function evaluations, and the total amount of
computational work is comparable.

See the function num_ex5() in ode.py. The errors of the two approximations are:

Let us finally compare the error at xend when the two methods are applied to our test problem, for
different values of h:

First of all, Heun’s method is significantly more accurate than Euler’s method, even when the number of
function evaluations are the same. Further, we notice that the error from Heun’s method is reduced by a
factor of approximately 1/4 whenever the step size is reduced by a factor 1/2, indicating that the error
|y(xend − yN | ≈ Ch2, and the method is of order 2.

Numerical example 6: Solve the Lotka-Volterra equation from Numerical example 2 by Euler’s and
Heun’s methods, again using twice as many steps for Euler’s method than for Heun’s method.

• Use h = 0.01 for Euler’s method and h = 0.02 for Heun’s method.

• Use h = 0.1 for Euler’s method and h = 0.2 for Heun’s method.

See the function num_ex6() in ode.py.

Numerical exercises:

1. Solve Van der Pol’s equation by use of Heun’s method. Experiment with different choices of the
step size h and compare with the results from Numerical experiment 3.

2. Implement the classical Runge–Kutta method and verify numerically that the order of the method
is 4. The method is given by

9

https://wiki.math.ntnu.no/tma4100/tema/differentialequations?&#numeriske_losninger
https://en.wikipedia.org/wiki/Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_methods#The_Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_method

k1 = f(xn,yn)

k2 = f
(
xn + h

2 ,yn + h

2 k1

)
k3 = f

(
xn + h

2 ,yn + h

2 k2

)
k4 = f(xn + h,yn + hk3)

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4).

Convergence properties of Heun’s method. To prove convergence and to find the order of a method
two things are needed:

• the local truncation error, expressed as a power series in the step size h

• the condition ‖Φ(x,y;h)−Φ(x, z;h)‖ ≤M‖y− z‖

The local truncation error is found by making Taylor expansions of the exact and the numerical solutions
starting from the same point, and compare. In practice, this is not trivial. For simplicity, we will here do
this for a scalar equation y′(x) = f(x, y(x)). The result is valid for systems as well

In the following, we will use the notation

fx = ∂f

∂x
, fy = ∂f

∂y
, fxx = ∂2f

∂x2 fxy = ∂2f

∂x∂y
etc.

Further, we will surpress the arguments of the function f and its deriviatives. So f is to be understood as
f(x, y(x)) although it is not explicitely written.

The Taylor expansion of the exact solution y(x+ h) is given by

y(x+ h) = y(x) + hy′(x) + h2

2 y
′′(x) + h3

6 y
′′′(x) + · · · .

Higher derivatives of y(x) can be expressed in terms of the function f by using the chain rule and the
product rule for differentiation.

y′(x) = f,

y′′(x) = fx + fyy
′ = fx + fyf,

y′′′(x) = fxx + fxyy
′ + fyxf + fyyy

′f + fyfx + fyfyy
′ = fxx + 2fxyf + fyyf

2 + fyfx + (fy)2f.

Find the series of the exact and the numerical solution around x0, y0 (any other point will do equally
well). From the discussion above, the series for the exact solution becomes

y(x0 + h) = y0 + hf + h2

2 (fx + fyf) + h3

6 (fxx + 2fxyf + fyyff + fyfxf + fyfx + (fy)2f) + · · · ,

where f and all its derivatives are evaluated in (x0, y0). For the numerical solution we get

k1 = f(x0, y0) = f,

k2 = f(x0 + h, y0 + hk1)

= f + hfx + fyhk1 + 1
2fxxh

2 + fxyhhk1 + 1
2fyyh

2k2
1 + · · ·

= f + h(fx + fyf) + h2

2 (fxx + 2fxyf + fyyf
2) + · · · ,

y1 = y0 + h

2 (k1 + k2) = y0 + h

2 (f + f + h(fx + fyf) + h2

2 (fxx + 2fxyk1 + fyyf
2)) + · · ·

= y0 + hf + h2

2 (fx + fyf) + h3

4 (fxx + 2fxyf + fyyf
2) + · · ·

10

and the local truncation error will be

d1 = y(x0 + h)− y1 = h3

12(−fxx − 2fxyf − fyyf
2 + 2fyfx + 2(fy)2f) + · · ·

The first nonzero term in the local truncation error series is called the principal error term. For h
sufficiently small this is the term dominating the error, and this fact will be used later.

Although the series has been developed around the initial point, series around xn, y(xn) will give similar
results, and it is possible to conclude that, given sufficient differentiability of f there is a constant D such
that

|dn| ≤ Dh3.

Further, we have to prove the condition on the increment function Φ(x, y). For f differentiable, there is
for all y, z some ξ between x and y such that f(x, y)− f(x, z) = fy(x, ξ)(y − z). Let L be a constant such
that |fy| < L, and for all x, y, z of interest we get

|f(x, y)− f(x, z)| ≤ L|y − z|.

The increment function for Heun’s method is given by

Φ(x, y) = 1
2(f(x, y) + f(x+ h, y + hf(x, y))).

By repeated use of the condition above and the triangle inequalitiy for absolute values we get

|Φ(x, y)− Φ(x, z)| = 1
2 |f(x, y) + f(x+ h, y + f(x, y))− f(x, z)− hf(x+ h, z + f(x, z)|

≤ 1
2
(
|f(x, y)− f(x, z)|+ |f(x+ h, y + hf(x, y))− f(x+ h, z + hf(x, z)|

)
≤ 1

2
(
L|y − z|+ L|y + hf(x, y)− z − hf(x, z)|

)
≤ 1

2
(
2L|y − z|+ hL2|y − z|

)
= (L+ h

2L
2)|y − z|.

Assuming that the step size h is bounded upward by some H, we can conclude that

|Φ(x, y)− Φ(x, z)| ≤M |y − z|, M = L+ H

2 L
2.

In conclusion: Heun’s method is convergent of order 2.

6 Error estimation and step size control

To control the global error y(xn) − yn is notoriously difficult, and far beyond what will be discussed
in this course. To control the local error in each step, and adjust the step size accordingly is rather
straightforward, as we will see.

6.1 Error estimation

Given two methods, one of order p and the other of order p+ 1 or higher. Assume we have reached a
point (xn,yn). One step forward with each of these methods can be written as

yn+1 = yn + hΦ(xn,yn;h), order p,

ŷn+1 = yn + hΦ̂(xn,yn;h), order p+ 1 or more.

11

Let y(xn+1;xn,yn) be the exact solution of the ODE through (xn,yn). We would like to find an estimate
for the local error ln+1 , that is the error in one step starting from (xn,yn),

ln+1 = y(xn+1;xn,yn)− yn+1.

As we already have seen, the local error is found by finding the power series in h of the exact and the
numerical solution. The local error is of order p if the lowest order terms in the series where the exact
and the numerical solution differs is of order p+ 1. So the local error of the two methods are

y(xn+1;xn,yn)− yn+1 = Ψ(xn, yn)hp+1+ . . . ,

y(xn+1;xn,yn)− ŷn+1 = . . . ,

where Ψ(xn, yn) is a term consisting of method parameters and differentials of f and . . . contains all the
terms of the series of order p+ 2 or higher. Taking the difference gives

ŷn+1 − yn+1 = Ψ(xn,yn)hp+1 + · · · .

Assume that h is small, such that the principal error term Ψ(xn,yn)hp+1 dominatesthe the error series.
Then a reasonable approximation to the unknown local error ln+1 is the local error estimate len+1:

len+1 = ŷn+1 − yn+1 ≈ y(xn+1;xn,yn)− yn+1.

Example 4: Apply Euler’s method of order 1 and Heun’s method of order 2 with h = 0.1 to the
equation

y′ = −2xy, y(0) = 1.

Use this to find an approximation to the error after one step.

Euler’s method:
y1 = 1.0− 0.1 · 2 · 0 · 1.0 = 1.0.

Heun’s method

k1 = −2 · 0.0 · 1.0 = 0.0,
k2 = −2 · 0.1 · (1 + 0.0) = −0.2,

ŷ1 = 1.0 + 0.1
2 · (0.0− 0.2) = 0.99.

The error estimate and the local error are respectively

le1 = ŷ1 − y1 = −10−2, l1 = y(0.1)− y1 = e−0.12
− 1.0 = −0.995 · 10−2.

so in this case the error estimate is a quite decent approximation to the real local error.

6.2 Stepsize control

The next step is to control the local error, that is, choose the step size so that ‖len+1‖ ≤ Tol for some
given tolerance Tol, and for some chosen norm ‖ · ‖.

Essentially:

Given xn,yn and a step size hn.

• Do one step with the method of choice, and find an error estimate len+1.

• if ‖le‖n+1 < Tol

Accept the solution xn+1,yn+1.

If possible, increase the step size for the next step.

12

• else

Repeat the step from (xn,yn) with a reduced step size hn.

In both cases, the step size will change. But how?

From the discussion above, we have that

‖len+1‖ ≈ Dhp+1
n .

where len+1 is the error estimate we can compute, D is some unknown quantity, which we assume almost
constant from one step to the next. What we want a step size hnew such that

Tol ≈ Dhp+1
new.

From these two approximations we get:

Tol
‖len+1‖

≈
(
hnew

hn

)p+1
⇒ hnew ≈

(
Tol
‖len+1‖

) 1
p+1

hn.

This approximation holds either the step is rejected or not. To avoid too many rejected steps, it is common
to be a bit restrictive when choosing the new step size, so the following is used in practice:

hnew = P ·
(

Tol
‖len+1‖

) 1
p+1

hn.

where the pessimist factor P < 1 is some constant, normally chosen between 0.5 and 0.95.

6.3 Implementation

We have all the bits and pieces for constructing an adaptive ODE solver based on Euler’s and Heuns’s
methods. There are still some practical aspects to consider:

• The combination of the two methods, implemented in heun_euler can be written as

k1 = f(xn,yn),
k2 = f(xn + h,yn + hk1),

yn+1 = yn + hk1, Euler

ŷn+1 = yn + h

2 (k1 + k2), Heun

len+1 = ‖ŷn+1 − yn+1‖ = h

2 ‖k2 − k1‖.

• Even if the error estimate is derived for the lower order method, in this case Euler’s method, it is
common to advance the solution with the higher order method, since the additional accuracy is for
free.

• Adjust the last step to be able to terminate the solutions exactly in xend.

• To avoid infinite loops, add some stopping criteria. In the code below, there is a maximum number
of allowed steps (rejected or accepted).

• The main driver ode_adaptive is written to make it simple to test other pair of methods. This is
also the reason why the function heun_euler returns the order of the lowest order method.

13

Numerical example 7: Apply the code on the test equation:

y′ = −2xy, y(0) = 1.

See the function num_ex7() in ode.py.

The error |y(xn)− yn| is:

And the step size will change like

Numerical exercises:

1. Solve the Lotka-Volterra equation, use for instance h0 = 0.1 and Tol = 10−3. Notice also how the
step size varies over the integration interval.

2. Repeat the experiment using Van der Pol’s equation.

6.4 Runge–Kutta methods

Euler’s and Heun’s method are both examples of explicit Runge-Kutta methods (ERK). Such schemes are
given by

k1 = f(xn,yn),
k2 = f(xn + c2h,yn + ha21k1),
k3 = f

(
xn + c3h,yn + h(a31k1 + a32k2)

)
,

...

ks = f
(
xn + csh,yn + h

s−1∑
j=1

asjkj

)
,

yn+1 = yn + h

s∑
i=1

biki,

where ci, aij and bi are coefficients defining the method. We always require ci =
∑s

j=1 aij . Here, s is the
number of stages, or the number of function evaluations needed for each step. The vectors ki are called
stage derivatives. Also implicit methods, like the trapezoidal rule,

yn+1 = yn + h

2
(
f(xn,yn) + f(xn + h,yn+1)

)
can be written in a similar form,

k1 = f(xn,yn),

k2 = f
(
xn + h,yn + h

2 (k1 + k2)
)
,

yn+1 = yn + h

2 (k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to be solved to
find k2.

14

Definition: Runge–Kutta methods.

An s-stage Runge-Kutta method is given by

ki = f
(
xn + cih,yn + h

s∑
j=1

aijkj

)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑
i=1

biki.

The method is defined by its coefficients, which is given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

with

ci =
s∑

j=1
aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i, otherwise implicit.

A Runge–Kutta methods with an error estimate are usually called embedded Runge–Kutta methods or
Runge–Kutta pairs, and the coefficients can be written in a Butcher tableau as follows

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs Order p
b̂1 b̂2 · · · b̂s Order p+ 1

.

The error estimate is then given by

len+1 = h

s∑
i=1

(̂bi − bi)ki.

Example 5: The Butcher-tableaux for the methods presented so far are

0 0
1

0 0 0
1 1 0

1
2

1
2

0 0 0
1 1

2
1
2

1
2

1
2

Euler Heun trapezoidal rule

and the Heun-Euler pair can be written as

0
1 1

1 0
1
2

1
2

15

See this list of Runge–Kutta methods for more.

Order conditions for Runge–Kutta methods. It can be proved that a Runge–Kutta method is of
order p if all the conditions up to and including p in the table below are satisfied.

p conditions
1

∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6
4

∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

where sums are taken over all the indices from 1 to s.

Example 6: Apply the conditions to Heun’s method, for which s = 2 and the Butcher tableau is

c1 a11 a12

c2 a21 a22

b1 b2

=
0 0 0
1 1 0

1
2

1
2

.

The order conditions are:

p = 1 b1 + b2 = 1
2 + 1

2 = 1 OK

p = 2 b1c1 + b2c2 = 1
2 · 0 + 1

2 · 1 = 1
2 OK

p = 3 b1c
2
1 + b2c

2
2 = 1

2 · 0
2 + 1

2 · 1
2 = 1

2 6=
1
3 Not satisfied

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) = 1
2(0 · 0 + 0 · 1) + 1

2(1 · 0 + 0 · 1)

= 0 6= 1
6 Not satisfied

The method is of order 2.

16

https://en.wikipedia.org/wiki/List_of_Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_methods

6.5 A summary of some terms and definitions

There has been quite a lot of definitions and different error terms in this note. So let us list some of them
(not exclusive):

Definitions:

y′ = f(x,y) the ODE
y(x ; x∗,y∗), the exact solution of the ODE through (x∗,y∗)
y(x) = y(x ; x0,y0), the exact solution of y′ = f(x,y), y(x0) = y0

yn+1 = yn + hΦ(xn, yn;h), one step of the method

Let Φ represent a method of order p and Φ̂ a method of order p+ 1.

Error concepts:

dn+1 = y(xn + h ; xn,y(xn))−
(

y(xn) + hΦ(xn,y(xn);h)
)
, the local truncation error

ln+1 = y(xn + h ; xn,yn)−
(

yn + hΦ(xn,yn;h)
)
, the local error

len+1 = h

(
Φ̂(xn,yn;h)−Φ(xn,yn;h)

)
, the local error estimate, len+1 ≈ ln+1

en = y(xn)− yn the global error

17

	Introduction
	Numerical methods for solving ODEs
	Euler's method
	Implementation
	Systems of ODEs
	Higher order ODEs

	Error analysis
	Local and global errors
	A general convergence result

	Error estimation and step size control
	Error estimation
	Stepsize control
	Implementation
	Runge–Kutta methods
	A summary of some terms and definitions

