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1 Introduction

Given the finite integral

I[f ](a, b) =
∫ b

a

f(x)dx.

A numerical quadrature or a quadrature rule is a formula for approximating such integrals. Quadratures
are usually of the form

Q[f ](a, b) =
n∑

i=0
wif(xi),

where xi, wi for i = 0, 1, . . . , n are respectively the nodes and the weights of the quadrature rule. If the
function f is given from the context, we will for simplicity denote the integral and the quadrature simply
as I(a, b) and Q(a, b).

The trapezoidal rule, the midpoint rule and Simpson’s rule known from previous courses are all examples
of numerical quadratures.

In this note we will see how quadrature rules can be constructed from integration of interpolation
polynomials. We will demonstrate how to do error analysis and how to find error estimates. We will
also demonstrate how the integration interval can be automatically partitioned in subintervals, so called
adaptive integration.

In the sequel, we will use material from Preliminaries, section 3.2, 4 and 5.

2 Quadrature based on polynomial interpolation.

This section relies on the content of the note on polynomial interpolation, in particular the section on
Lagrange polynomials.

Choose n + 1 distinct nodes xi, i = 0, . . . , n in the interval [a, b], and let pn(x) be the interpolation
polynomial satisfying the interpolation condition

pn(xi) = f(xi), i = 0, 1, . . . .

We will then use
∫ b

a
pn(x)dx as an approximation to

∫ b

a
f(x)dx. By using the Lagrange form of the

polynomial

pn(x) =
n∑

i=0
f(xi)`i(x)

with the cardinal functions `i(x) given by
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`i(x) =
n∏

j=0,j 6=i

x− xj

xi − xj
,

the following quadrature formula is obtained

Q[f ](a, b) =
∫ b

a

pn(x)dx =
n∑

i=0
f(xi)

∫ b

a

`i(x)dx =
n∑

i=0
wif(xi) = Q(a, b).

The weights in the quadrature is simply the integral of the cardinal functions over the interval.

Let us derive two schemes for integration over the interval [0, 1], and apply them to the integral

I(0, 1) =
∫ 1

0
cos
(π

2 x
)

= 2
π

= 0.636619 . . . .

Example 1: Let x0 = 0 and x1 = 1. The cardinal functions and thus the weights are given by

`0(x) = 1− x, w0 =
∫ 1

0
(1− x)dx = 1/2

`1(x) = x, w1 =
∫ 1

0
xdx = 1/2

and the corresponding quadrature rule, better known as the trapezoidal rule and usually denoted by T , is
given by

T (0, 1) = 1
2 [f(0) + f(1)] .

This formula applied to the function f(x) = cos(πx/2) gives

T (0, 1) = 1
2

[
cos(0) + cos

(π
2

)]
= 1

2 ,

and the error is
I(0, 1)− T (0, 1) = 2

π
− 1

2 = 0.138 . . .

Example 2: Let x0 = 1/2 +
√

3/6 and x1 = 1/2−
√

3/6. Then

`0(x) = −
√

3x+ 1 +
√

3
2 , w0 =

∫ 1

0
`0(x)dx = 1/2,

`1(x) =
√

3x+ 1−
√

3
2 , w1 =

∫ 1

0
`1(x)dx = 1/2.

The quadrature rule is

Q(0, 1) = 1
2

[
f

(
1
2 −
√

3
6

)
+ f

(
1
2 +
√

3
6

)]
.

And this quadrature applied to f(x) = cos(πx/2) is given by

Q(0, 1) = 1
2

[
cos
(π

2 x0

)
+ cos

(π
2 x1

)]
= 0.635647 . . .

with an error
I(0, 1)−Q(0, 1) = 9.72 . . . · 10−4.

So the choice of nodes clearly matters!

Before concluding this section, let us present simple indication on the quality of a method:
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Definition: The degree of precision.

A numerical quadrature has degree of precision d if Q[p](a, b) = I[p](a, b) for alle p ∈ Pd.

Since both integrals and quadratures are linear in the integrand f , the degree of precision is d if

I[xj ](a, b) = Q[xj ](a, b), j = 0, 1, . . . , d,
I[xd+1](a, b) 6= Q[xd+1](a, b)

All quadratures constructed from Lagrange interpolation polynomials in n+ 1 distinct nodes will auto-
matically be of precision at least n.

It is left to the reader to show that the trapezoidal rule from Example 1 is of precision 1, the formula
from Example 2 of precision 3.

3 Construction of numerical quadratures

In the following, you will learn the steps on how to construct realistic algorithms for numerical integration,
similar to those used in software like Matlab of SciPy. The steps are:

Construction.

1. Choose n+ 1 distinct nodes on a standard interval [−1, 1].

2. Let pn(x) be the polynomial interpolating some general function f in the nodes, and let the
Q[f ](−1, 1) = I[pn](−1, 1).

3. Transfer the formula Q from [−1, 1] to some interval [a, b].

4. Find the composite formula, by dividing the interval [a, b] into subintervals and applying the
quadrature formula on each subinterval.

5. Find an expression for the error E[f ](a, b) = I[f ](a, b)−Q[f ](a, b).

6. Find an expression for an estimate of the error, and use this to create an adaptive algorithm.

3.1 Simpson’s rule

We will go through the steps above for one method, Simpson’s formula. The strategy is quite generic, so it
is more important to understand and remember how results are derived, not exactly what they are. The
different algorithms will be implemented and tested, and theoretical results will be verified by numerical
experiments.

We will adopt the standard notation and denote this particular quadrature by S[f ](a, b).

The quadrature formula on the standard interval [-1,1]. The quadrature rule is defined by the
choice of nodes on a standard interval [−1, 1]. For Simpson’s rule, choose the nodes t0 = −1, t1 = 0 and
t2 = 1. The corresponding cardinal functions are

`0 = 1
2(t2 − t), `1(t) = 1− t2, `2(t) = 1

2(t2 + t).

which gives the weights
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w0 =
∫ 1

−1
`0(t)dt = 1

3 , w1 =
∫ 1

−1
`1(t)dt = 4

3 , w2 =
∫ 1

−1
`2(t)dt = 1

3

such that

∫ 1

−1
f(t)dt ≈

∫ 1

−1
p2(t)dt =

2∑
i=0

wif(ti) = 1
3 [ f(−1) + 4f(0) + f(1) ] .

Simpson’s rule has degree of precision 3 (check it yourself).

Example 3: ∫ 1

−1
cos
(
πt

2

)
dt = 4

π
≈ 1

3 [cos(−π/2) + 4 cos(0) + cos(π/2)] = 4
3 .

Transfer the integral and the quadrature to the interval [a, b]. The integral and the quadrature
is transferred to some arbitrary interval [a, b] by the transformation

x = b− a
2 t+ b+ a

2 , so dx = b− a
2 dt.

Thus

∫ b

a

f(x)dx = b− a
2

∫ 1

−1
f

(
b− a

2 t+ b+ a

2

)
dt ≈ b− a

6

[
f(a) + 4f

(
b+ a

2

)
+ f(b)

]
.

Simpson’s rule over the interval [a, b] becomes

S(a, b) = b− a
6 [ f(a) + 4f(c) + f(b) ] , c = b+ a

2 .

Composite Simpson’s rule. Divide [a, b] into 2m equal intervals of length h = (b − a)/(2m). Let
xj = a+ jh, i = 0, · · · , 2m, and apply Simpson’s rule on each subinterval [x2j , x2j+2]. The result is:

∫ b

a

f(x)dx =
m−1∑
j=0

∫ x2j+2

x2j

f(x)dx ≈
m−1∑
j=0

S(x2j , x2j+2) (1)

=
m−1∑
j=0

h

3 [f(x2j) + 4f(x2j+1) + f(x2j+2)] (2)

= h

3

f(x0) + 4
m−1∑
j=0

f(x2j+1) + 2
m−1∑
j=1

f(x2j) + f(x2m)

 (3)

We will use the the notation Sm(a, b) for the composite Simpson’s rule on m subintervals.

Implementation and testing. It is now time to implement the composite Simpson’s method, and see
how well it works. See the function simpson in the file quadrature.py.

Test if the code is correct. We know that Simpson’s rule has precision 3, thus all third degree polynomials
can be integrated exactly. Choose one such polynomial, find the exact integral, and compare.
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Numerical experiment 1: Apply the code on the integral, and compare with the exact result.

∫ 2

−1
(4x3 + x2 + 2x− 1)dx = 18.

Numerical experiment 2: We will assume that the error decreases when the number of subintervals
m increases. But how much?

Apply the composite method on the integral (again with a known solution):

∫ 1

0
cos
(πx

2

)
dx = 2

π
.

Use the function ’simpson’ with m = 1, 2, 4, 8, 16 and see how the error changes with m. Comment on the
result.

From the experiment we observe that the error is reduced by a factor approximately 0.0625 = 1/16
whenever the number of subintervals increases with a factor 2. In the following, we will prove that this is
in fact what can be expected.

3.2 Error analysis

First we will find an expression for the error E(a, b) = I(a, b)− S(a, b) over one interval (a, b). This will
then be used to find an expression for the composite formula.

Let c = (a+ b)/2 be the midpoint of the interval, and h = (b− a)/2 be the distance between c and the
endpoints a and b. Do a Taylor series expansion of the integrand f around the midpoint, and integrate
each term in the series.

∫ b

a

f(x)dx =
∫ h

−h

f(c+ s)ds =
∫ h

−h

(
f(c) + sf ′(c) + 1

2s
2f ′′(c) + 1

6s
3f ′′′(c) + 1

24s
4f (4)(c) + · · ·

)
ds (4)

= 2hf(c) + h3

3 f
′′(c) + h5

60f
(4)(c) + · · · . (5)

Similarly, do a Taylor series expansion of the quadrature S(a, b) around c:

S(a, b) = h

3 (f(c− h) + 4f(c) + f(c+ h)) (6)

= h

3

(
f(c)− hf ′(c) + 1

2h
2f ′′(c)− 1

6h
3f ′′′(c) + 1

24h
4f (4)(c) + · · · (7)

+ 4f(c) (8)

+ f(c) + hf ′(c) + 1
2h

2f ′′(c) + 1
6h

3f ′′′(c) + 1
24h

5f (4)(c) + · · ·
)

(9)

= 2hf(c) + h3

3 f
′′(c) + h5

36f
(4)(c) + · · · (10)

The series expansion of the error becomes:

E(a, b) =
∫ b

a

f(x)dx− S(a, b) = −h
5

90f
(4)(c) + · · · = − (b− a)5

25 · 90 f (4)(c) + · · · ,

using h = (b− a)/2.
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NB! By choosing to do the Taylor-expansions around the midpoint, every second term disappear thanks
to symmetry. Choosing another point ĉ in the interval will give the same dominant error term (with c
replaced by ĉ), but the calculations will be much more cumbersome.

Usually, we will assume h to be small, such that the first nonzero term in the series dominates the error,
and the rest of the series can be ignored. It is however possible, but not trivial, to prove the following
result:

Theorem: Error in Simpson’s method.

Let f(x) ∈ C4[a, b]. There exist a ξ ∈ (a, b) such that

E(a, b) =
∫ b

a

f(x)dx− b− a
6

[
f(a) + 4f

(
b+ a

2

)
+ f(b)

]
= − (b− a)5

2880 f (4)(ξ).

NB!: Since p(4)(x) = 0 for all p ∈ P3 the degree of precisision is 3.

Use the theorem to find an expression for the error in the composite Simpson’s formula Sm(a, b):

∫ b

a

f(x)dx− Sm(a, b) =
m−1∑
j=0

(∫ x2j+2

x2j

f(x)dx− h

3 [f(x2j) + 4f(x2j+1) + f(x2j+2)]
)

(11)

=
m−1∑
j=0
− (2h)5

2880 f
(4)(ξj) (12)

where ξj ∈ (x2j , x2j+2). We can then use the generalized mean value theorem, see Preliminaries, section
5, result 2. According to this, there is a ξ ∈ (a, b) such that

m−1∑
j=0

f (4)(ξj) = mf (4)(ξ).

Use 2mh = b− a, and the following theorem has been proved:

Theorem: Error in composite Simpson’s method.

Let f(x) ∈ C4[a, b]. There exist a ξ ∈ (a, b) such that

∫ b

a

f(x)dx− Sm(a, b) = − (b− a)h4

180 f (4)(ξ).

Example 4: Find the upper bound for the error when the composite Simpson’s rule is applied to the
integral

∫ 1
0 cos(πx/2)dx.

In this case f (4)(x) = (π4/16) cos(πx/2), so that |f4)(x)| ≤ (π/2)4. The error bound becomes

|I(a, b)− Sm(a, b)| ≤ 1
180

(
1

2m

)4 (π
2

)4
= π4

46080
1
m4 .

If m is increased by a factor 2, the error will be reduced by a factor of 1/16, as indicated by Numerical
experiment 2.

Numerical exercise: Include the error bound in the output of Numerical experiment 2, and confirm
that it really holds.
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3.3 Error estimate

From a practical point of view, the error expression derived above has some limitations. First, the bounds
are often much too high. Second, we do not always know (or want to find) |f (4)(x)|, even less its upper
bound. So the question arises: How can we find an estimate of the error, without any extra analytical
calculations?

This is the idea: Let the interval (a, b) chosen small, such that f (4)(x) can be assumed to be almost
constant over the interval. Let H = b− a be the length of the interval. Let S1(a, b) and S2(a, b) be the
results from Simpson’s formula over one and two subintervals respectively. Further, let C = −f (4)(x)/2880
for some x ∈ [a, b], which x does not matter since f (4) is assumed almost constant anyway. The errors of
the two approximations are then given by

I(a, b)− S1(a, b) ≈ CH5,

I(a, b)− S2(a, b) ≈ 2C
(
H

2

)5
.

Subtract the two expressions to eliminate I(a, b):

S2(a, b)− S1(a, b) ≈ 15
16CH

5 ⇒ CH5 ≈ 16
15(S2(a, b)− S1(a, b)).

Insert this in the expression for the error:

E1(a, b) = I(a, b)− S1(a, b) ≈ 16
15(S2(a, b)− S1(a, b) ) = E1(a, b), (13)

E2(a, b) = I(a, b)− S2(a, b) ≈ 1
15(S2(a, b)− S1(a, b) ) = E2(a, b). (14)

This gives us a computable estimate for the error, both in S1 and S2. As the error in S2(a, b) is about 1/16
of the error in S1(a, b), and we anyway need to compute both, we will use S2(a, b) as our approximation.
An even better approximation to the integral is given for free by just adding the error estimate.

Example 5: Find an approximation to the integral
∫ 1

0 cos(x)dx = sin(1) by Simpson’s rule over one
and two subintervals. Find the error estimates Em, m = 1, 2 and compare with the exact error.

Solution:

S1(0, 1) = 1
6
[

cos(0.0) + 4 cos(0.5) + cos(1.0)
]

= 0.8417720923 (15)

S2(0, 1) = 1
12
[

cos(0.0) + 4 cos(0.25) + 2 cos(0.5) + 4 cos(0.75) + cos(1.0)
]

= 0.8414893826 (16)

The exact error and the error estimate become:

E1(0, 1) = sin(1)− S1(0, 1) = −3.011 · 10−4, E1(0, 1) = 16
15(S2 − S1) = −3.016 · 10−4, (17)

E2(0, 1) = sin(1)− S2(0, 1) = −1.840 · 10−5, E2(0, 1) = 1
16(S2 − S1) = −1.885 · 10−5. (18)

In this case, it is a very good correspondence between the error estimate and the exact error. An even
better approximation is obtained by adding the error estimate to S2:

Q = S2(0, 1) + E2(0, 1) = 0.8414705353607151

with an error sin(1) − Q = 4.4945 · 10−7. This gives a lot of additional accuracy without any extra
work.
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Implementation of Simpson’s method with an error estimate. The function simpson_basic
returns

S2(a, b) ≈
∫ b

a

f(x)dx

including an error estimate.

Test: As a first check of the implementation, use the example above, and make sure that the results are
the same:

Next, let us see how reliable the quadrature and the error estimates are for another example, which you
have to do yourself:

Numerical experiment 3: Given the integral (with solution)

I(a, b) =
∫ b

a

1
1 + 16x2 dx = arctan(4x)

4

∣∣∣∣b
a

1. Use simson_basic to find an approximation to the integral over the interval [0, 8]. Print out S2(0, 8),
the error estimate E2(0, 8) and the real error E2(0, 8). How reliable are the error estimates?

2. Repeat the experiment over the intervals [0, 1] and [4, 8]. Notice the difference between exact error
of the two intervals.

3. Repeat the experiment over the interval [0, 0.1].

This is what you should observe from the experiment:

1. Interval [0, 8]: The error is large, and the error estimate is significantly smaller than the real error
(the error is under-estimated).

2. Interval [0, 1]: As for the interval [0, 8].

3. Interval [4, 8]: Small error, and a reasonable error estimate.

4. Interval [0, 0.1]: Small error, reasonable error estimate.

Why is it so, and how can we deal with it? Obviously, we need small subintervals near x = 0, while large
subintervals are acceptable in the last half of the interval.

Explanation: The error in Simpson’s method is given by

E(a, b) = − (b− a)5

2880 f (4)(ξ).

So let us take a look at f (4)(x):

f(x) = 1
1 + 16x2 ⇒ f (4)(x) = 61441280x4 − 160x2 + 1

(1− 16x2)5

It is no surprise that the error is large and the error estimates fail (we have assumed f (4) almost constant
for the estimates) over the interval [0, 1]. The part of the interval where f (4)(x) is large has to be
partitioned in significantly smaller subintervals to get an acceptable result. But how, as f (4) is in general
not known? This is the topic of the next section.
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3.4 Adaptive integration

Given a basic function, for example simpson_basic, returning an approximation Q(a, b) to the integral,
as well as an error estimate E(a, b). Based on this, we want to find a partitioning of the interval:

a = X0 < X1 · · · < Xm = b

such that

|E(Xj , Xj+1)| ≈ Xk+1 −Xk

b− a
· Tol

where Tol is a tolerance given by the user. In this case

Accumulated error over (a, b) ≈
m−1∑
j=0
E(Xk, Xk+1) ≤ Tol.

Such a partitioning can be done by an recursive algorithm:

Algorithm: Adaptive quadrature.

Given f , a, b and a user defined tolerance Tol.

• Calculate Q(a, b) and E(a, b).

• if |E(a, b)| ≤ Tol:

Accept the result, return Q(a, b) + E(a, b) as an approximation to I(a, b).

• else:

Let c = (a+ b)/2, and repeat the process on each of the subintervals [a, c] and [c, b], with
tolerance Tol/2.

• Sum up the accepted results from each subinterval.

Implementation. The adaptive algorithm is implemented below with simpson_basic as the basic
quadrature routine. The function simpson_adaptive is a recursive function, that is a function that calls
itself. To avoid it to do so infinitely many times, an extra variable level is introduced, this will increase
by one for each time the function calls itself. If level is over some maximum value, the result is returned,
and a warning printed.

Numerical experiment 4: Use adaptive Simpson to find an approximation to the integral
∫ 5

0 1/(1 +
16x2)dx using the tolerances Tol=10−3, 10−5, 10−7. Compare the numerical result with the exact
one.

3.5 Other quadrature formulas

Simpson’s rule is only one example of quadrature rules derived from polynomial interpolations. There are
many others, and the whole process of deriving the methods, do error analysis, develope error estimates
and adaptive algorithms can be repeated.

Let us just conclude with a few other popular classes of methods:

9



Newton-Cotes formulas. These are based on equidistributed nodes. Both the Trapezoidal rule and
Simpson’s rule are examples of closed Newton-Cotes methods, the midpoint rule is an example of an open
one.

Gauss-Legendre quadrature: For the standard interval [−1, 1] choose the nodes as the zeros of the polynomial
of degree m:

Lm(t) = dm

dtm
(t2 − 1)m.

These are of precision d = 2m− 1, which is the best result possible with m nodes. The midpoint rule is
an example of a Gauss-Legendre quadrature with m = 1.

10

https://en.wikipedia.org/wikTi/Newton\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Cotes_formulas

	Introduction
	Quadrature based on polynomial interpolation.
	Construction of numerical quadratures
	Simpson's rule
	Error analysis
	Error estimate
	Adaptive integration
	Other quadrature formulas


