
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Stiff differential equations.

Anne Kværnø

Nov 16, 2018

1 Introduction

When an ODE is solved by an adaptive solver we will expect that more steps are required for stricter
tolerances. More specific: The step size control is based on the assumption that the local error estimate
len+1 satisfies

‖len+1‖ ≈ Dhp+1
n ≈ Tol,

where p is the order of the lowest order method, and D is independent of the step size h, D depends on
the solution point (x,y), but it will not change much from one step to the next.

By solving a problem by some adaptive method, using different tolerances, Tol1 and Tol2, we will expect
that the corresponding step sizes h1 and h2 near the same arbitrary solution point will behave like

Tol1 ≈ Dhp+1
1 , Tol2 ≈ Dhp+1

2 ,

so that
h1

h2
≈
(
Tol1
Tol2

) 1
p+1

≈ N2

N1
.

where N1 and N2 are the total number of steps used for the two tolerances.

In the case of Heun-Euler p = 1. By reducing the tolerance by a factor 1/100 we will expect that the
number of steps increases by a factor of 10.

Numerical example 1: Given the following system of 2 ODEs

y′1 = −2y1 + y2 + 2 sin(x), y1(0) = 2,
y′2 = (a− 1)y1 − ay2 + a

(
cos(x)− sin(x)

)
, y2(0) = 3,

where a is some positive parameter. The exact solution, which is independent of the parameter, is

y1(x) = 2e−x + sin(x), y2(x) = 2e−x + cos(x),

check it yourself. Solve this problem with some adaptive ODE solver, for instance the Heun-Euler
scheme.

Now try Tol = 10−2, 10−4, 10−6, and do the experiment with two different values of the parameters, a = 2
and a = 999.

For a = 2 the expected behaviour is observed. But the example a = 999 requires much more steps, and
the step size seems almost independent of the tolerance, at least for Tol = 10−2, 10−4.

The example above with a = 999 is a typically example of a stiff ODE. When a stiff ODE is solved by
some explicit adaptive method an unreasonable large number of steps is required, and this number seems
independent of the tolerance. In the remaining part of this note we will explain why this happens, and
how we can overcome the problem. For simplicity, the discussion is restricted to linear problems, but also
nonlinear ODEs can, and often will be, stiff.

Exercise 1: Repeat the experiment on the Van der Pol equation

y′1 = y2, y1(0) = 2,
y′2 = µ(1− y2

1)y2 − y1, y2(0) = 0.

Use µ = 2, µ = 5 and µ = 50.

1.1 Linear stability analysis

Motivation. Given a system of m differential equation of the form

y′ = Ay + g(x). (*)

Such systems have been discussed in Mathematics 3, and the technique for finding the exact solution will
shortly be repeated here:

Solve the homogenous system y′ = Ay, that is, find the eigenvalues λi and the corresponding eigenvectors
vi satisfying

Avi = λivi, i = 1, 2, . . . ,m. (**)

Assume that A has a full set of linear independent eigenvectors vi. Let V = [v1, . . . ,vm], and Λ =
diag{λ1, . . . , λm}. In this case V is invertible and

AV = V Λ ⇔ V −1AV = Λ.

The ODE (*) can be rewritten by

V −1y′ = V −1AV V −1y + V −1g(x).

Let z = V −1y and q(x) = V −1g(x) such that the equation can be decoupled into a set of independent
scalar differential equations

z′ = Λz + q(x) ⇔ z′i = λizi + qi(x), i = 1, . . . ,m.

The solution of such equations has been discussed in Mathematics 1. When these solutions are found, the
exact solution is given by

y(x) = V z(x),

and possible integration constants are given by the initial values.

As it turns out, the eigenvalues λi are the key to understand the behaviour of the adaptive integrators.
So we will discuss the stability properties of the very simplified linear test equation

y′ = λy.

For general problems the eigenvalues and the eigenvectors may be complex. In that case, the solutions
will appear in complex conjugate pairs which can be combined to trigonometric functions. In this note,
we will for simplicity only consider λ ∈ R. The discussion below is also relevant for nonlinear ODEs,
y′(x) = f(x,y(x)), in which case λ is considered as an eigenvalue of the Jacobian fy of f with respect to
y.

2

https://wiki.math.ntnu.no/tma4100/tema/differentialequations

Example 1: Return to the introductory example. The ODE can be written as

y′ = Ay + g(x),

with

A =
(
−2 1
a− 1 −a

)
, g(x) =

(
sin(x)

a(cos(x)− sin(x))

)
.

The eigenvalues of the matrix A are λ1 = −1 and λ2 = −(a+ 1). The general solution is given by

y(x) = c1

(
1
1

)
e−x + c2

(
−1
a− 1

)
e−(a+1)x +

(
sin(x)
cos(x)

)
.

In the introductory example, the initial values were chosen such that c1 = 2 and c2 = 0. But for a large,
the term e−(a+1)x will go to 0 almost immediatly, even if c2 6= 0. It is still this term that creates problems
for the numerical solution.

Stability functions and stability intervals. Given the linear test equation

y′ = λy, y(0) = y0, λ ∈ R, λ < 0,

with exact solution

y(x) = eλx y0.

Since λ < 0 the solution y(x)→ 0 when x→∞. We want a similar behaviour for the numerical solution,
that is |yn| → 0 when n→∞. But do we get it?

One step of some Runge–Kutta method applied to the linear test equation can always be written as

yn+1 = R(z)yn, z = λh.

The function R(z) is called the stability function of the method.

Taking the absolute value on each side of this expression, we see that there are three possible out-
comes:

|R(z)| < 1 ⇒ |yn+1| < |yn| ⇒ yn → 0 (stable)
|R(z)| = 1 ⇒ |yn+1| = |yn|
|R(z)| > 1 ⇒ |yn+1| > |yn| ⇒ |yn| → ∞ (unstable)

The stability interval of a method is defined by

S = {z ∈ R : |R(z)| ≤ 1}.

To get a stable numerical solution, we have to choose the step size h such that z = λh ∈ S.

3

Numerical example 2: Euler’s method applied to the linear test equation is

yn+1 = yn + hλyn = (1 + hλ)yn,

so the stability function R(z) and the stability interval S is

R(z) = 1 + z, S = [−2, 0].

Next, solve the introductory problem

y′ =
(
−2 1
a− 1 −a

)
y +

(
sin(x)

a(cos(x)− sin(x))

)
, y(0) =

(
2
3

)
, a > 0.

by Euler’s method. We know that the eigenvalues of the matrix A are

λ1 = −1 and λ2 = −(1 + a).

For the numerical solution to be stable for both eigenvalues, we have to require that

h ≤ 2
1 + a

.

Try a = 9 and a = 999. Choose step sizes a little bit over and under the stability boundary, and you can
experience that the result is sharp. If h is just a tiny bit above, you may have to increase the interval of
integration to see the unstable solution.

It is the term corresponding to the eigenvalue λ2 = −(a+ 1) which makes the solution unstable. And the
solution oscillate since R(z) < −1 for h > 2/(1 + a).

Exercise 2:

1. Find the stability function and the stability interval for Heun’s method.

2. Repeat the experiment in Example 2 using Heun’s mehod.

NB! Usually the error estimation in adaptive methods will detect the unstability and force the step
size to stay inside or near the stability interval. This explains the behaviour of the experiment in the
introduction of this note.

2 A(0)-stable methods.

In an ideal world, we would prefer the stability interval to satisfy S ⊃ R−, such that the method is stable
for all λ < 0 and for all h. Such methods are called A(0)-stable. For all explicit methods, like Euler’s and
Heun’s, the stability function will be a polynomial, and |R(z)| → ∞ as z → −∞. Explicit methods can
not be A(0)-stable. We have to search among implicit methods. The simplest of those is the implicit, or
backward Euler’s method, given by

yn+1 = yn + hf(xn+1, yn+1).

Applied to the linear test equation y′ = λy:

yn+1 = yn + hλyn+1 ⇒ yn+1 = 1
1− hλyn ⇒ R(z) = 1

1− z .

The method is A(0)-stable since |R(z)| ≤ 1 for all z ≤ 0.

4

2.1 Implementation of implicit Euler’s method

For simplicity, we will only discuss the implementation of implicit Euler’s method for linear systems of
the form

y′ = Ay + g(x),

where A is a constant matrix. In this case, one step of implicit Euler is given by

yn+1 = yn + hAyn+1 + hg(xn+1).

A linear system

(I − hA)yn+1 = yn + hg(xn+1)

has to be solved with respect to yn+1 for each step.

In the implementation below, the right hand side of the ODE is implemented as a function rhs, returning
the matrix A and the vector g(x) for each step. The function implicit_euler does one step with implicit
Euler. It has the same interface as the explicit method, so that the function ode_solve can be used as
before.

Numerical example 3: Solve the test equation with

A =
(
−2 1
a− 1 −a

)
, g(x) =

(
sin(x)

a(cos(x)− sin(x))

)
,

by implicit Euler. Choose a = 2 and a = 999, and try different stepsizes like h = 0.1 and h = 0.01. Are
there any stability issues in this case?

Exercise 2: The trapezoidal rule is an implicit method which for a general ODE y′(x) = f(x,y(x)) is
given by

yn+1 = yn + h

2

(
f(xn,yn) + f(xn+1,yn+1)

)
.

1. Find the stability function to the trapezoidal rule, and prove that it is A(0)-stable.

2. Implement the method, and repeat the experiment above.

2.2 Adaptive methods.

Implicit Euler is a method of order 1, and the trapezoidal rule of order 2. Thus, these can be used for
error estimation: Do one step with each of the methods, use the difference between the solutions as an
error estimate, and use the solution from the trapezoidal rule to advance the solution. This has been
implemented in the function trapezoidal_ieuler. The interface is as for the embedded pair heun_euler,
so the adaptive solver ode_adaptive can be used as before.

5

Numerical example 4: Repeat the experiment from the introduction, using trapezoidal_euler.

We observe that there are no longer any step size restriction because of stability. The algorithm behaves
as expected.

Comment: Implicit methods can of course also be applied for nonlinear ODEs. Implicit Euler’s method
will be

yn+1 = yn + hf(x,yn+1),

which is a nonlinear system which has to be solved for each step. Similar for the trapezoidal rule. Usually
these equations are solved by Newton’s method or some simplification of it.

Summary.

Linear test equation:
y′ = λy, λ < 0.

Stability function R(z), given by the method applied to the test problem:

yn+1 = R(z)yn, z = λh.

Stability interval S:
S = {z ∈ R, |R(z)| ≤ 1}.

A(0)-stability:
S ⊃ R−,

which is the same as
|R(z)| ≤ 1 for all z ≤ 0.

6

	Introduction
	Linear stability analysis

	A(0)-stable methods.
	Implementation of implicit Euler's method
	Adaptive methods.

