

- 1 A deck of cards can be considered a set, where each element (i.e. card) has a value and a suit. Given an element x, x_v is its value and x_s its suit (if x is the Queen of hearts, $x_v = 12$ and $x_s =$ hearts). Let the set D be a standard deck of 52 cards.
 - a) Find the cardinality of the following sets:
 - 1. $S = \{x \in D | x_s = \text{spades}\}$
 - 2. $B = \{ \text{the set of court cards in } D \}^1$
 - 3. $S \cap B$
 - 4. $S \cup B$
 - 5. $S \setminus B$
 - 6. $S \times B$
 - 7. $\{(x,y) \in D \times D | x = y\}$
 - **b)** Fill in the correct symbol: \in , \subseteq or \nsubseteq
 - 1. ace of hearts $\Box D$
 - 2. {ace of hearts} $\Box D$
 - 3. $S\Box D$
 - 4. $S\Box B$
 - c) Let $A = \{C \subseteq D | C \text{ contains all card of a suit}\}$. Are the following statements true or false?
 - 1. $\forall C \in A \exists x \in C \text{ such that } x_v = 5.$
 - 2. $\forall C \in A \exists ! x \in C \text{ such that } x_v < 5.$
 - 3. $\exists x \in D$ such that $x_v \leq y_v \forall y \in D$.
- **2** Consider the sets $A = \{\blacksquare, \triangle, \Diamond\}$ and $B = \{\circ, \star\}$.
 - **a)** How many functions $f: A \to B$ exist? (i.e. with domain A and codomain B)
 - **b)** How many functions f are there with domain A and range B?
 - c) How many injective functions are there from B to A?
 - d) Given two arbitrary, finite sets X and Y, how many different functions are there from X to Y?

¹Court cards: Jack, Queen, King

3 Find a domain A such that the following mappings f are bijections $A \to f(A)$. Try to choose A as large as possible. What is f(A) and f^{-1} for your choice of A?

a)
$$x \mapsto x^3$$
 $A \subseteq \mathbb{R}$
b) $x \mapsto \sin(x)$ $A \subseteq \mathbb{R}$
c) $x \mapsto \tan(x)$ $A \subseteq \mathbb{R}$
d) $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x + 2y \end{bmatrix}$ $A \subseteq \mathbb{R}^2$
e) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ 0 \\ x + z \end{bmatrix}$ $A \subseteq \mathbb{R}^3$

- **4** a) Find a bijection $f: \mathbb{Z} \to \mathbb{N}$.
 - **b)** Challenge: Find a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. (Can you think of how to use this bijection to show that the set of rational numbers \mathbb{Q} is *countable*?)