1 A deck of cards can be considered a set, where each element (i.e. card) has a value and a suit. Given an element x, x_{v} is its value and x_{s} its suit (if x is the Queen of hearts, $x_{v}=12$ and $x_{s}=$ hearts). Let the set D be a standard deck of 52 cards.
a) Find the cardinality of the following sets:

1. $S=\left\{x \in D \mid x_{s}=\right.$ spades $\}$
2. $B=\{\text { the set of court cards in } D\}^{1}$
3. $S \cap B$
4. $S \cup B$
5. $S \backslash B$
6. $S \times B$
7. $\{(x, y) \in D \times D \mid x=y\}$
b) Fill in the correct symbol: \in, \subseteq or \nsubseteq
8. ace of hearts $\square D$
9. \{ace of hearts $\} \square D$
10. $S \square D$
11. $S \square B$
c) Let $A=\{C \subseteq D \mid C$ contains all card of a suit $\}$. Are the following statements true or false?
12. $\forall C \in A \exists x \in C$ such that $x_{v}=5$.
13. $\forall C \in A \exists!x \in C$ such that $x_{v}<5$.
14. $\exists x \in D$ such that $x_{v} \leq y_{v} \forall y \in D$.

02 Consider the sets $A=\{\boldsymbol{\square}, \triangle, \diamond\}$ and $B=\{\circ, \star\}$.
a) How many functions $f: A \rightarrow B$ exist? (i.e. with domain A and codomain B)
b) How many functions f are there with domain A and range B ?
c) How many injective functions are there from B to A ?
d) Given two arbitrary, finite sets X and Y, how many different functions are there from X to Y ?

[^0]3 Find a domain A such that the following mappings f are bijections $A \rightarrow f(A)$. Try to choose A as large as possible. What is $f(A)$ and f^{-1} for your choice of A ?
a) $x \mapsto x^{3} \quad A \subseteq \mathbb{R}$
b) $x \mapsto \sin (x) \quad A \subseteq \mathbb{R}$
c) $x \mapsto \tan (x) \quad A \subseteq \mathbb{R}$
d) $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ x+2 y\end{array}\right] \quad A \subseteq \mathbb{R}^{2}$
е) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \mapsto\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x \\ 0 \\ x+z\end{array}\right] \quad A \subseteq \mathbb{R}^{3}$

4 a) Find a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$.
b) Challenge: Find a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. (Can you think of how to use this bijection to show that the set of rational numbers \mathbb{Q} is countable?)

[^0]: ${ }^{1}$ Court cards: Jack, Queen, King

