1 (Young: Exercises 1.3, 1.10, Problem 1.8)
a) Show that

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

defines an inner product on $C([0,1], \mathbb{C})$, the space of complex-valued continuous functions on the interval $[0,1]$.
b) Prove that, for any $f \in C([0,1], \mathbb{C})$,

$$
\left|\int_{0}^{1} f(t) \sin (\pi t) d t\right| \leq \frac{1}{\sqrt{2}}\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}
$$

and classify the functions f for which equality holds.
c) Prove that, for any $f \in C^{1}([-\pi, \pi], \mathbb{C})$,

$$
\left|\int_{-\pi}^{\pi} f(t) \cos (t)-f^{\prime}(t) \sin (t) d t\right| \leq \sqrt{2 \pi}\left(\int_{-\pi}^{\pi}|f(t)|^{2}+\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}
$$

Hint: you need to generalize the inner product from (a) here.

2 (Parallelogram law and Polarization identity) For a normed space $(X,\|\cdot\|)$, the parallelogram law is the identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

a) Show that if X is a real space, and the parallelogram law holds, then

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

defines an inner product on X satisfying $\langle x, x\rangle=\|x\|^{2} .{ }^{1}$
Hint: To prove $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ first prove that $\langle 2 x, y\rangle=2\langle x, y\rangle$, then generalize this to $\langle m x, y\rangle=m\langle x, y\rangle$ and $\left\langle\frac{m}{n} x, y\right\rangle=\frac{m}{n}\langle x, y\rangle$ for positive integers $m, n \in \mathbb{N}$. Use a continuity/limiting argument to pass to $\lambda>0$. Finally, deduce the desired equality by using that $\lambda x=|\lambda|(-x)$ for negative λ.
b) Give an example of a normed space $(X,\|\cdot\|)$ and vectors $x, y \in X$ such that the parallelogram law does not hold for x, y.

[^0]3 (Problem 4, 2004) The matrix

$$
A=\left[\begin{array}{ccc}
4 & 1 & 1 \\
0 & 3 & 0 \\
-1 & -1 & 2
\end{array}\right]
$$

has characteristic polynomial $p_{A}(\lambda)=(3-\lambda)^{3}$.
a) Find a Jordan form J for A.
b) Find a matrix S such that $S^{-1} A S=J$.
c) Find the general solution $u: \mathbb{R} \rightarrow \mathbb{R}^{3}$ of the differential equation $\dot{u}=A u$.

4 (Young: Problem 3.10)
a) Let M be a non-empty closed and convex set in a Hilbert space. Show that M contains a unique vector $x_{\text {min }}$ of smallest norm, and that

$$
\operatorname{Re}\left\langle x_{\min }, x_{\min }-x\right\rangle \leq 0 \quad \text { for all } \quad x \in M
$$

Hint: To obtain the inequality, use that $x_{\min }-t\left(x_{\min }-x\right) \in M$ by convexity for arbitrarily small $t>0$.
b) Try to find a nice example in \mathbb{R}^{2} which exemplifies (a). Illustrate with a picture.

5 (Young: Problems 3.7, 3.8)
a) Show that the unit ball in a normed space is convex; then show that all open balls in a normed space are convex.
b) Show that, in a normed space, the closure of any convex set is convex. Deduce that all balls (open or closed) in a normed space are convex.
c) Show that in l_{∞} the closed linear subspace c_{0} (which is a convex set) has no unique element that minimizes the distance to the element $(1,1,1, \ldots) \in l_{\infty}$ consisting of only ones. You can do this for l_{∞} real or complex, as you like.

6 (Challenge) Show that $C([0,1], \mathbb{R})$ with the L_{2}-inner product is not a Hilbert space.

[^0]: ${ }^{1}$ Similarly, if X is a complex space, and the parallelogram law holds, one can show that $\langle x, y\rangle=$ $\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2}$ defines an inner product on X satisfying $\langle x, x\rangle=\|x\|^{2}$.

