

- 1 (Young, Problem 4.1) Find a vector in \mathbb{C}^3 orthogonal to (1, 1, 1) and $(1, \omega, \omega^2)$, where $\omega = e^{2\pi i/3}$. (The inner product in \mathbb{C}^3 is $\langle z, w \rangle = \sum_{j=1}^3 z_j \overline{w_j}$.)
- 2 (*Problem 3, 2005*) Let $E = C([0, 1], \mathbb{C})$ be the linear space of complex-valued continuous functions on [0, 1]. Define

$$||x||_{\infty} = \max_{t \in [0,1]} |x(t)|$$
 and $\langle x, y \rangle = \int_0^1 x(t) \overline{y(t)} dt$,

where $x, y \in E$.

- a) Show that $\|\cdot\|_{\infty}$ is a norm on E, and that $\langle\cdot,\cdot\rangle$ is an inner product on E.
- **b)** Show that $M := \{x \in E : x(0) = 0\}$ is a closed linear subspace of E with respect to the metric d induced by $\|\cdot\|_{\infty}$, but that M is not closed with respect to the metric \tilde{d} induced by $\langle\cdot,\cdot\rangle$.
- c) Show that the linear functional $\phi: E \to \mathbb{C}$, defined by $\phi(x) = x(0), x \in E$, is continuous with respect to the metric d, but discontinuous with respect to the metric \tilde{d} on E.
- **d)** Find $a, b \in \mathbb{C}$ such that

$$\int_0^1 |t^4 - a - bt|^2 \, dt$$

is minimal.

3 (*Problem 4, 2005*) The set $C([-\frac{1}{2}, \frac{1}{2}], \mathbb{R})$ of real-valued continuous functions on $[-\frac{1}{2}, \frac{1}{2}]$ with the metric

$$d(x, \tilde{x}) = \max_{t \in [-\frac{1}{2}, \frac{1}{2}]} |x(t) - \tilde{x}(t)|$$

is a complete metric space.¹ The function $f(t, u) = u^3 - 2t^2$ satisfies the Lipschitz condition

$$|f(t,u) - f(t,v)| \le \frac{3}{4}|u-v|$$
 in $R = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}].$

a) Let $X = \{x \in C([-\frac{1}{2}, \frac{1}{2}], \mathbb{R}) : d(x, 0) \le \frac{1}{2}\}$, and define T by

$$(Tx)(t) = \int_0^t f(\tau, x(\tau)) \, d\tau.$$

Show that T maps X into X.

¹It coincides with $BC([-\frac{1}{2}, \frac{1}{2}], \mathbb{R})$.

- b) Show that $T: X \to X$ is a contraction with contraction constant $\lambda = \frac{3}{8}$.
- c) Let $x_0 = 0$, $x_1 = Tx_0$, and $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. Explain why the sequence $\{x_n\}_{n=1}^{\infty}$ converges (with respect to the metric d) to a function $\tilde{x} \in C([0, 1], \mathbb{R})$, and give an argument for why $\tilde{x} = \tilde{x}(t)$ satisfies the differential equation

$$x' = x^3 - 2t^2, \qquad t \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$

with the initial condition x(0) = 0.

4 (Young, Problem 4.6: The Gram-Schmidt process) Let x_1, x_2, \ldots be a sequence of linearly independent vectors in an inner-product space. Define vectors e_1, e_2, \ldots inductively as follows:

$$e_1 = x_1 / ||x_1||,$$

 $f_n = x_n - \sum_{j=1}^{n-1} \langle x_n, e_j \rangle e_j, \qquad e_n = f_n / ||f_n||, \qquad n \ge 2.$

Show that $\{e_n\}_{n\in\mathbb{N}}$ is an orthonormal sequence having the same closed linear span as $\{x_n\}_{n\in\mathbb{N}}$.

5 (*Problem 5, 2008*) Let $C([0,1],\mathbb{C})$ denote the space of complex-valued continuous functions on [0,1], and let

$$\langle f,g \rangle = \int_0^1 f(t)\overline{g(t)} \, dt$$

be the standard inner product on $C([0, 1], \mathbb{C})$.

a) Let $T: C([0,1], \mathbb{C}) \to C([0,1], \mathbb{C})$ be the linear transformation which sends $f \in C([0,1], \mathbb{C})$ to the function Tf given by (Tf)(t) = tf(t). Show that T is self-adjoint, i.e., that

$$\langle Tf,g\rangle = \langle f,Tg\rangle$$

for all $f, g \in C([0, 1], \mathbb{C})$.

b) For $f, g \in C([0, 1], \mathbb{C})$ define $\langle f, g \rangle_T$ by

$$\langle f, g \rangle_T = \langle Tf, g \rangle.$$

Prove that $\langle \cdot, \cdot \rangle_T$ is an inner product on $C([0, 1], \mathbb{C})$.

c) Let $V \subset C([0,1],\mathbb{C})$ be the subspace $\{a + bt + ce^t : a, b, c \in \mathbb{C}\}$. Find a and b such that

$$\int_0^1 t|e^t - a - bt|^2 dt$$

is minimal.