1 (Young, Problem 4.1) Find a vector in \mathbb{C}^{3} orthogonal to $(1,1,1)$ and $\left(1, \omega, \omega^{2}\right)$, where $\omega=e^{2 \pi i / 3}$. (The inner product in \mathbb{C}^{3} is $\langle z, w\rangle=\sum_{j=1}^{3} z_{j} \overline{w_{j}}$.)

2 (Problem 3, 2005) Let $E=C([0,1], \mathbb{C})$ be the linear space of complex-valued continuous functions on $[0,1]$. Define

$$
\|x\|_{\infty}=\max _{t \in[0,1]}|x(t)| \quad \text { and } \quad\langle x, y\rangle=\int_{0}^{1} x(t) \overline{y(t)} d t
$$

where $x, y \in E$.
a) Show that $\|\cdot\|_{\infty}$ is a norm on E, and that $\langle\cdot, \cdot\rangle$ is an inner product on E.
b) Show that $M:=\{x \in E: x(0)=0\}$ is a closed linear subspace of E with respect to the metric d induced by $\|\cdot\|_{\infty}$, but that M is not closed with respect to the metric \tilde{d} induced by $\langle\cdot, \cdot\rangle$.
c) Show that the linear functional $\phi: E \rightarrow \mathbb{C}$, defined by $\phi(x)=x(0), x \in E$, is continuous with respect to the metric d, but discontinuous with respect to the metric \tilde{d} on E.
d) Find $a, b \in \mathbb{C}$ such that

$$
\int_{0}^{1}\left|t^{4}-a-b t\right|^{2} d t
$$

is minimal.

3 (Problem 4, 2005) The set $C\left(\left[-\frac{1}{2}, \frac{1}{2}\right], \mathbb{R}\right)$ of real-valued continuous functions on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ with the metric

$$
d(x, \tilde{x})=\max _{t \in\left[-\frac{1}{2}, \frac{1}{2}\right]}|x(t)-\tilde{x}(t)|
$$

is a complete metric space. ${ }^{1}$ The function $f(t, u)=u^{3}-2 t^{2}$ satisfies the Lipschitz condition

$$
|f(t, u)-f(t, v)| \leq \frac{3}{4}|u-v| \quad \text { in } \quad R=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] .
$$

a) Let $X=\left\{x \in C\left(\left[-\frac{1}{2}, \frac{1}{2}\right], \mathbb{R}\right): d(x, 0) \leq \frac{1}{2}\right\}$, and define T by

$$
(T x)(t)=\int_{0}^{t} f(\tau, x(\tau)) d \tau
$$

Show that T maps X into X.

[^0]b) Show that $T: X \rightarrow X$ is a contraction with contraction constant $\lambda=\frac{3}{8}$.
c) Let $x_{0}=0, x_{1}=T x_{0}$, and $x_{n+1}=T x_{n}$ for all $n \in \mathbb{N}$. Explain why the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges (with respect to the metric d) to a function $\tilde{x} \in C([0,1], \mathbb{R})$, and give an argument for why $\tilde{x}=\tilde{x}(t)$ satisfies the differential equation
$$
x^{\prime}=x^{3}-2 t^{2}, \quad t \in\left(-\frac{1}{2}, \frac{1}{2}\right)
$$
with the initial condition $x(0)=0$.

4 (Young, Problem 4.6: The Gram-Schmidt process) Let x_{1}, x_{2}, \ldots be a sequence of linearly independent vectors in an inner-product space. Define vectors e_{1}, e_{2}, \ldots inductively as follows:

$$
\begin{aligned}
& e_{1}=x_{1} /\left\|x_{1}\right\| \\
& f_{n}=x_{n}-\sum_{j=1}^{n-1}\left\langle x_{n}, e_{j}\right\rangle e_{j}, \quad e_{n}=f_{n} /\left\|f_{n}\right\|, \quad n \geq 2
\end{aligned}
$$

Show that $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonormal sequence having the same closed linear span as $\left\{x_{n}\right\}_{n \in \mathbb{N}}$.

5 (Problem 5, 2008) Let $C([0,1], \mathbb{C})$ denote the space of complex-valued continuous functions on $[0,1]$, and let

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

be the standard inner product on $C([0,1], \mathbb{C})$.
a) Let $T: C([0,1], \mathbb{C}) \rightarrow C([0,1], \mathbb{C})$ be the linear transformation which sends $f \in$ $C([0,1], \mathbb{C})$ to the function $T f$ given by $(T f)(t)=t f(t)$. Show that T is selfadjoint, i.e., that

$$
\langle T f, g\rangle=\langle f, T g\rangle
$$

for all $f, g \in C([0,1], \mathbb{C})$.
b) For $f, g \in C([0,1], \mathbb{C})$ define $\langle f, g\rangle_{T}$ by

$$
\langle f, g\rangle_{T}=\langle T f, g\rangle
$$

Prove that $\langle\cdot, \cdot\rangle_{T}$ is an inner product on $C([0,1], \mathbb{C})$.
c) Let $V \subset C([0,1], \mathbb{C})$ be the subspace $\left\{a+b t+c e^{t}: a, b, c \in \mathbb{C}\right\}$. Find a and b such that

$$
\int_{0}^{1} t\left|e^{t}-a-b t\right|^{2} d t
$$

is minimal.

[^0]: ${ }^{1}$ It coincides with $B C\left(\left[-\frac{1}{2}, \frac{1}{2}\right], \mathbb{R}\right)$.

