1 (Problem 4, 2000)
a) Find the $Q R$-factorization of

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]
$$

b) Which point in $\operatorname{span}\{(1,1,1),(1,2,3)\} \subset \mathbb{C}^{3}$ is closest to $(\mathrm{i}, 0,1)$?

2 (Problem 6, 2001)
a) Let $T \in B(H)$ be a bounded linear transformation $H \rightarrow H$. Show that

$$
\operatorname{ker}(T)=\operatorname{ker}\left(T^{*} T\right)
$$

b) Let $A \in M_{m \times n}(\mathbb{C})$. Show that

$$
\operatorname{ker}(A)=\operatorname{ker}\left(A^{*} A\right)
$$

3 (Problem 3, 2002)
a) Let $A \in M_{n \times n}(\mathbb{R})$. Prove that

$$
\langle x, y\rangle_{A}=y^{t} A x
$$

defines an inner product on \mathbb{R}^{n} if and only if A is symmetric and positive definite.
b) Let $v_{1}(t)=e^{t}, v_{2}(t)=e^{-t}$, and let V be the function space $\left\{a v_{1}+b v_{2}: a, b \in \mathbb{R}\right\}$ with inner product

$$
\langle x, y\rangle=\int_{0}^{1} x(t) y(t) d t
$$

Furthermore, let $T: V \rightarrow \mathbb{R}^{2}$ be the linear transformation

$$
T\left(a v_{1}+b v_{2}\right)=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Find $A \in M_{2 \times 2}(\mathbb{R})$ such that T is unitary on $\left(\mathbb{R}^{2},\langle\cdot, \cdot\rangle_{A}\right)$.

4 (Problem 4, 2003) Let $A \in M_{n \times n}(\mathbb{C})$. Show that if A can be diagonalized by a unitary matrix, then $|A x|=\left|A^{*} x\right|$ for all $x \in \mathbb{C}^{n}$.

5 (Problem 3, 2011) Let $T \in L\left(\mathbb{R}^{4}\right)$, and suppose that there are $a, b \in \mathbb{R}$ such that T is realized by the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 3 & a \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & b
\end{array}\right] .
$$

a) Find the eigenvalues and eigenvectors of T in terms of a and b.
b) For which values of a and b does \mathbb{R}^{4} have a basis of eigenvectors of T ?
c) Are there choices for a and b so that \mathbb{R}^{4} has an orthonormal basis of eigenvectors of T ?

6 (Problem 1, 2002) Let

$$
A=\frac{\sqrt{2}}{10}\left[\begin{array}{ccc}
3 & 0 & -4 \\
0 & 10 & 0 \\
-3 & 0 & 4 \\
0 & 10 & 0
\end{array}\right] \quad \text { and } \quad B=\frac{1}{25}\left[\begin{array}{ccc}
9 & 0 & -12 \\
0 & 100 & 0 \\
-12 & 0 & 16
\end{array}\right]
$$

so that $A^{t} A=B$.
a) Give an orthogonal diagonalization $Q D Q^{t}$ of B.
b) Find $\exp (t B)$ and solve the initial-value problem

$$
\dot{x}=B x, \quad x(0)=\left[\begin{array}{c}
0 \\
25 \\
50
\end{array}\right] .
$$

c) Find the singular value decomposition and the pseudoinverse of A.

