1 (Kreyzig, exercise 1.1.2) Does $d(x, y)=(x-y)^{2}$ define a metric on the real line? Why/why not?

2 (Kreyzig, exercise 1.1.10) Let X be the set of all ordered triples of zeros and ones.
a) What is the cardinality of X ?
b) Let $d(x, y)=$ 'number of places where x and y have different entries'. Show that d is a metric on X.

The metric d is called the Hamming distance and has applications in coding theory, telecommunications and automata theory.

3 (Friedberg exercise 1.2.12) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even if $f(t)=f(-t)$ for all $t \in \mathbb{R}$.

Prove that the set of even functions $\mathbb{R} \rightarrow \mathbb{R}$ with component-wise addition,

$$
(f+g)(t) \stackrel{\text { def. }}{=} f(t)+g(t)
$$

and scalar multiplication,

$$
(\lambda f)(t) \stackrel{\text { def. }}{=} \lambda(f(t)), \quad \lambda \in \mathbb{R},
$$

is a real vector space.
Hint: you need to find the zero vector, the additive inverse of an element f, and check the axioms of a real vector space. Most importantly, check that the operations of addition and scalar multiplication does not 'lead out of the space', i.e., that they are operations $X \times X \rightarrow X$ and $\mathbb{R} \times X \rightarrow X$, respectively.

4 (Kreyzig, exercise 1.1.12) Let (X, d) be metric space X.
a) Use the generalized triangle inequality ${ }^{1}$

$$
d\left(x_{1}, x_{n}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right), \quad x_{j} \in X,
$$

to show that

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w), \quad x, y, z, w \in X
$$

[^0]b) For $x, y, z, w \in X$, is it always true that
$$
d(x, y)-d(z, w) \leq d(x, z)+d(y, w) ?
$$

5 a) Prove that

$$
\|f\|_{\infty}=\sup _{t \in(0,1)}|f(t)|
$$

defines a norm on the space of bounded and continuous functions $B C((0,1), \mathbb{R})$.
b) Which of the following functions are in $B C((0,1), \mathbb{R})$:

$$
\text { (i) } t \mapsto \frac{1}{t}, \quad(i i) t \mapsto \sin (t), \quad(i i i) t \mapsto \sin (1 / t) ?
$$

6 (Challenge) Let $C_{2 \pi-\mathrm{per}}^{\infty}(\mathbb{R}, \mathbb{R})$ be the space of smooth (i.e., infinitely differentiable), 2π-periodic real functions, and consider the ordinary differential equations

$$
\begin{align*}
& f+f^{\prime \prime}=0 \tag{1}\\
& f-f^{\prime \prime}=0 \tag{2}
\end{align*}
$$

a) Find the general solution of (1) and (2), respectively.

This shows that $1+\left(\frac{d}{d x}\right)^{2}: C_{2 \pi-\text { per }}^{\infty}(\mathbb{R}, \mathbb{R}) \rightarrow C_{2 \pi-\text { per }}^{\infty}(\mathbb{R}, \mathbb{R})$ is not injective.
b) Let

$$
g(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

be the Fourier series of a function $g \in C_{2 \pi-\mathrm{per}}^{\infty}(\mathbb{R}, \mathbb{R})$. Can you find f such that $f-f^{\prime \prime}=g$?
In finding f, you find the inverse of $1-\left(\frac{d}{d x}\right)^{2}$ on $C_{2 \pi-\mathrm{per}}^{\infty}(\mathbb{R}, \mathbb{R})$.
c) Find a function $g \in C_{2 \pi \text {-per }}^{\infty}(\mathbb{R}, \mathbb{R})$ such that $f+f^{\prime \prime}=g$ has no solution $f \in$ $C_{2 \pi \text {-per }}^{\infty}(\mathbb{R}, \mathbb{R})$. Hint: write g and f as Fourier series. Recall (a).
This shows that $1+\left(\frac{d}{d x}\right)^{2}: C_{2 \pi-\text { per }}^{\infty}(\mathbb{R}, \mathbb{R}) \rightarrow C_{2 \pi-\text { per }}^{\infty}(\mathbb{R}, \mathbb{R})$ is not surjective.

[^0]: ${ }^{1}$ The generalized triangle inequality follows from the triangle inequality by induction on n.

