

1 (Strang 2.1.2) Which of the following subsets of \mathbb{R}^3 are vector spaces when we define addition and scalar multiplication as on \mathbb{R}^3 ?

Give a proof or a counterexample in each case.

- **a)** $\{(0, y, z) \in \mathbb{R}^3\}$
- **b)** $\{(1, y, z) \in \mathbb{R}^3\}$
- c) $\{(x, y, z) \in \mathbb{R}^3 | yz = 0\}$
- **d)** All linear combinations $\lambda u + \mu v$ where u = (1, 1, 0), v = (2, 0, 1) and $\lambda, \mu \in \mathbb{R}$
- e) $\{(x, y, z) \in \mathbb{R}^3 | z y + 3x = 0\}$

2 (Kreyzig 1.3.2) What is an open ball $B_1(x_0)$

- **a)** in \mathbb{R} with metric d(x, y) = |x y|?
- **b)** in \mathbb{C} with the metric induced by the norm $||x|| = \sqrt{\operatorname{Re}(x)^2 + \operatorname{Im}(x)^2}$?
- c) in $BC([a, b], \mathbb{R})$ with the metric induced by the supremum norm?
- **3** (*Kreyzig* 1.3.5)
 - **a)** Let (X, d) be a metric space. Show that X and \emptyset are both open and closed as subsets of X.
 - b) Show that in a discrete metric space, every subset is both open and closed.
- 4 (Kreyzig 1.4.6) If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) where $a_n = d(x_n, y_n)$ converges. Give an example where this happens.
- **5** (*Kreyzig 1.1.7*) If A is the subspace of l^{∞} consisting of all sequences of zeros and ones, what is the induced metric on A?

6 Challenge

- a) (*Kreyzig 1.2.4*) Find a sequence that converges to 0, but which is not in any space l^p where $1 \le p < \infty$.
- **b)** (*Kreyzig 1.2.5*) Find a sequence x such that $x \notin l^1$, but $x \in l^p$ for p > 1.