1 (Strang 2.1.2) Which of the following subsets of $\mathbb{R}^{3}$ are vector spaces when we define addition and scalar multiplication as on $\mathbb{R}^{3}$ ?
Give a proof or a counterexample in each case.
a) $\left\{(0, y, z) \in \mathbb{R}^{3}\right\}$
b) $\left\{(1, y, z) \in \mathbb{R}^{3}\right\}$
c) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z=0\right\}$
d) All linear combinations $\lambda u+\mu v$ where $u=(1,1,0), v=(2,0,1)$ and $\lambda, \mu \in \mathbb{R}$
e) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z-y+3 x=0\right\}$

2 (Kreyzig 1.3.2) What is an open ball $B_{1}\left(x_{0}\right)$
a) in $\mathbb{R}$ with metric $d(x, y)=|x-y|$ ?
b) in $\mathbb{C}$ with the metric induced by the norm $\|x\|=\sqrt{\operatorname{Re}(x)^{2}+\operatorname{Im}(x)^{2}}$ ?
c) in $B C([a, b], \mathbb{R})$ with the metric induced by the supremum norm?

3 (Kreyzig 1.3.5)
a) Let $(X, d)$ be a metric space. Show that $X$ and $\emptyset$ are both open and closed as subsets of $X$.
b) Show that in a discrete metric space, every subset is both open and closed.

4 (Kreyzig 1.4.6) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in a metric space $(X, d)$, show that $\left(a_{n}\right)$ where $a_{n}=d\left(x_{n}, y_{n}\right)$ converges. Give an example where this happens.

5 (Kreyzig 1.1.7) If $A$ is the subspace of $l^{\infty}$ consisting of all sequences of zeros and ones, what is the induced metric on $A$ ?

6 Challenge
a) (Kreyzig 1.2.4) Find a sequence that converges to 0 , but which is not in any space $l^{p}$ where $1 \leq p<\infty$.
b) (Kreyzig 1.2.5) Find a sequence $x$ such that $x \notin l^{1}$, but $x \in l^{p}$ for $p>1$.

