

1 (Friedberg 1.2.18) Consider the set \mathbb{R}^2 and define addition and scalar multiplication on it as follows.

 $(x_1, x_2) + (y_1, y_2) = (x_1 + 2y_1, x_2 + 3y_2) \qquad \lambda(x_1, x_2) = (\lambda x_1, \lambda x_2)$

Prove or disprove that \mathbb{R}^2 under these operations is a vector space.

2 (Kreyzig 1.5.3) Show that the subspace $X \subset BC([a, b], \mathbb{R})$ defined by

$$X = \{ f \in BC([a, b], \mathbb{R}) : f(a) = f(b) \}$$

is complete.

3 (Kreyzig 2.2.4) We consider the definition of a norm on a real vector space X.a) Show that replacing the condition

$$||x|| = 0 \Leftrightarrow x = 0$$

with

$$||x|| = 0 \Rightarrow x = 0$$

does not alter the the concept of a norm (a norm under the "new axioms" will fulfill the "old axioms" as well).

b) Show that the axioms

$$\|\lambda x\| = |\lambda| \|x\| \qquad \lambda \in \mathbb{R}, x \in X$$

and

$$||x + y|| \le ||x|| + ||y||$$
 $x, y \in X$

implies the non-negativity of a norm.

4 (Kreyzig 2.2.13) Let $X \neq \{0\}$ be a vector space. Show that the discrete metric on X cannot be obtained from any norm on X (There is no norm $\|\cdot\|$ on X such that $d(x, y) = \|x - y\|$ is the discrete metric).

Definition.

$$l_{\infty}(\mathbb{R}) = \{ (x_i)_{i \in \mathbb{N}} : x_i \in \mathbb{R}, \sup_{i \in \mathbb{N}} |x_i| < \infty \}$$

The norm on $l_{\infty}(\mathbb{R})$ is $||x||_{l^{\infty}} = \sup_{i \in \mathbb{N}} |x_i|$

5 (Kreyzig 1.5.8) Let $M \subset l_{\infty}(\mathbb{R})$ be the subspace consisting of all sequences $x = (x_i)_{i \in \mathbb{N}}$ with finitely many nonzero terms.

Find a Cauchy sequence in M that does not converge in M.

NB: Each element in M is a sequence, and you are looking for a sequence of elements of M; thus you are looking for a sequence of sequences.

6 (Challenge)

- **a)** Prove that $l_{\infty}(\mathbb{R})$ is complete.
- **b)** Show that $l_{\infty}(\mathbb{R})$, the space of bounded sequences in \mathbb{R} , equipped with the infinity norm, is not separable.

Hint: assume you have a countable sequence (of sequences) that is dense in l_{∞} and construct an element (i.e. a sequence) that has a distance greater than or equal to 1 to all elements of the sequence.