1 (Friedberg 1.3.8) Determine which of the following sets are subspaces of \mathbb{R}^{3} under the operations of addition and scalar multiplication defined on \mathbb{R}^{3}. Justify your answers.
a) $\left\{(x, y, z) \in \mathbb{R}^{3}: x=3 y\right.$ and $\left.z=-y\right\}$
b) $\left\{(x, y, z) \in \mathbb{R}^{3}: x=z+2\right\}$
c) $\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x-7 y+z=0\right\}$
d) $\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y-3 z=1\right\}$
e) $\left\{(x, y, z) \in \mathbb{R}^{3}: 5 x^{2}-3 y^{2}+6 z^{2}=0\right\}$

2 a) Show that the vectors (x, y, z) in a plane $P=\left\{(x, y, z) \in \mathbb{R}^{3}: A x+B y+C z=\right.$ $0\}, A, B, C \in \mathbb{R}$, constitute a subspace of \mathbb{R}^{3}. (You only need to show that P is closed under addition and scalar multiplication; the vector space axioms follows from those of \mathbb{R}^{3})
b) What are the possible values of $\operatorname{dim} P$, the dimension of P ?

3 (Strang 2.1.11)Let $M_{2 \times 2}(\mathbb{R})$ be the set of real 2×2-matrices. $M_{2 \times 2}(\mathbb{R})$ is a real vector space under the following operations:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right] \quad \lambda \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\lambda a & \lambda b \\
\lambda c & \lambda d
\end{array}\right]
$$

Describe the smallest subspace of $M_{2 \times 2}(\mathbb{R})$ that contains
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$

4 (Friedberg 1.6.1) True or false?
a) The vector space $\{0\}$ has no basis.
b) Every vector space generated by a finite set has a basis.
c) Every vector space has a finite basis.
d) A vector space cannot have more that one basis.
e) If a vector space has a finite basis, then the number of vectors in any basis for the space is the same.
f) Suppose that V is a finitely generated vector space, that L is a linearly independent subset of V and that G is a subset generating V. Then L cannot contain more vectors than G.
g) If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.
h) Every subspace of a finite-dimensional space is finite-dimensional.
i) If V is a vector space of dimension n, then V has exactly one subspace of dimension n and one subspace of dimension 0 .
j) If V is a vector space of dimension n and S is a subset of V of cardinality n, then S is linearly independent if and only if S spans V.

5 (Friedberg 1.6.3) Which of the following sets are bases for $P_{2}(\mathbb{R})$, the real vector space of polynomials of degree at most 2 ?
a) $\left\{-1-x+2 x^{2}, 2+x-2 x^{2}, 1-2 x+4 x^{2}\right\}$
b) $\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$
c) $\left\{1-2 x-2 x^{2},-2+3 x-x^{2}, 1-x+6 x^{2}\right\}$
d) $\left\{-1+2 x+4 x^{2}, 3-4 x-10 x^{2},-2-5 x-6 x^{2}\right\}$
e) $\left\{1+2 x-x^{2}, 4-2 x+x^{2},-1+18 x-9 x^{2}\right\}$

6 (Friedberg 1.6.13) The set of solutions to the system of linear equations

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{array}
$$

is a subspace of \mathbb{R}^{3}. Find a basis for this subspace.

7 Challenge Show that the coordinates of the function f given by

$$
f(\theta):=\sin ^{3}(\theta)+\sin (\theta) \cos (\theta)
$$

in the Schauder basis $\{1, \sin (\cdot), \cos (\cdot), \sin (2 \cdot), \cos (2 \cdot), \ldots\}$ for $L_{2}((-\pi, \pi), \mathbb{R})$ is

$$
\left(0, \frac{3}{4}, 0, \frac{1}{2}, 0,-\frac{1}{4}, 0,0,0, \ldots\right)
$$

(Hint: It is not necessary, but possible, to use Fourier theory to solve this problem.)

