1 (Strang 2.3.33) Find a basis for each of these subspaces of $M_{3 \times 3}(\mathbb{R})$:
a) All diagonal matrices ($a_{i j}=0$ for $i \neq j$).
b) All symmetric matrices $\left(A^{T}=A\right)$.
c) All skew-symmetric matrices $\left(A^{T}=-A\right)$.

2 (Strang 1.5.7)

$$
A=\left[\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
6 & 9 & 8
\end{array}\right], \quad b=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right]
$$

a) Show by performing Gaussian elimination that the $L U$-factorisation of A is given by:

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
2 & 3 & 3 \\
0 & 5 & 7 \\
0 & 0 & -1
\end{array}\right]
$$

b) Write down the upper triangular system $U x=c$ which appears after Gaussian elimination of $A x=b$.

3 (Strang 1.5.29) The equation $A x=b$ can be solved via $L U x=b$, by first solving $L c=b$ for c, and then solving $U x=c$ for x.
a) Do this for

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], U=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text { and } b=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

b) Find A.

4 (Strang 1.6.39) Invert these matrices by the Gauss-Jordan method starting with [AI]
a)

$$
\left.A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \quad \text { (Answer: } A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\right)
$$

b)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

5 (Challenge)
a) (Friedberg 1.6.24) Let f be a polynomial of degree n in $P_{n}(\mathbb{R})$. Prove that for any $g \in P_{n}(\mathbb{R})$ there exist scalars $c_{0}, c_{1}, \ldots c_{n}$ such that

$$
g(x)=c_{0} f(x)+c_{1} f^{\prime}(x)+c_{2} f^{\prime \prime}(x)+\ldots+c_{n} f^{(n)}(x)
$$

where $f^{(n)}$ denotes the $n^{\text {th }}$ derivative of f.
b) Let $f(x)=x^{3}+x$. According to a) the set $F=\left\{f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)\right\}$ generate $P_{3}(\mathbb{R})$. Moreover, F is a basis for $P_{3}(\mathbb{R})$. Find the change-of-basis matrix from the standard basis $E=\left\{1, x, x^{2}, x^{3}\right\}$ for $P_{3}(\mathbb{R})$ to the basis F.
Use this to calculate the coordinates $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$ in a) for $g(x)=x^{3}-x^{2}+2$.

