This week's exercises are all from old exams (it's good practice!). The dates refer to which exams they were taken from.

1 (Exercise 1, December 2005) Let (X, d) be a metric space, and let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be two sequences in (X, d), both converging towards $a \in X$. Let $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ be the sequence defined by

$$
z_{n}= \begin{cases}x_{\frac{n+1}{2}} & n \text { is odd } \\ y_{\frac{n}{2}} & n \text { is even }\end{cases}
$$

i.e., $\left\{z_{n}\right\}_{n \in \mathbb{N}}=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)$. Show that $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in (X, d).

2 Let

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

be a real $n \times n$ matrix, and consider the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $x \mapsto A x$.
a) (Exercise 2a, November 2001)

Show that

$$
\|A x\|_{l_{\infty}} \leq\left(\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|\right)\|x\|_{l_{\infty}}
$$

What is $\|T\|$ (given that \mathbb{R}^{n} is equipped with the maximum norm)?
b) (Exercise 2a, December 2003)

Show that

$$
\|A x\|_{l_{1}} \leq\left(\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|\right)\|x\|_{l_{1}}
$$

3 (Exercise 3, November 2001) Find the LU-decomposition of

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]
$$

for which the diagonal elements of L are all ones.

4 (Exercise 2a, December 2005) The matrix A has an $L U$-decomposition as follows:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find bases for the subspaces $\operatorname{ran}(A)$ and $\operatorname{ker}\left(A^{T}\right)$ of $\mathbb{R}^{3} ; \operatorname{ker}(A)$ and $\operatorname{ran}\left(A^{T}\right)$ of \mathbb{R}^{5}.

5 (Exercise 3, December 2000) Let A be a real $m \times r$-matrix such that its column vectors are linearly independent, and B be a real $r \times n$-matrix such that its row vectors are linearly independent. Show that:
a) $\operatorname{ker}(A B)=\operatorname{ker}(B)$.
b) $\operatorname{ran}(A B)=\operatorname{ran}(A)$.

6 (Challenge. Exercise 5, November 2002)
Let $v_{1}, v_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $v_{1}(t)=e^{t}, v_{2}(t)=e^{-t}$, and consider the vector space $V=\left\{a v_{1}+b v_{2}: a, b \in \mathbb{R}\right\}$.
Let A be the matrix realization of a linear transformation $T: V \rightarrow V$ with respect to the basis $\left\{v_{1}, v_{2}\right\}$, and let B be its matrix realization with respect to the basis \{cosh, sinh . Find an invertible matrix S such that

$$
A=S^{-1} B S
$$

Finally, calculate A and B when T is the derivation operator $D=\frac{d}{d t}$. Check that in this case $A=S^{-1} B S$.

Tip:

$$
\cosh (t)=\frac{e^{t}+e^{-t}}{2} \quad \sinh (t)=\frac{e^{t}-e^{-t}}{2}
$$

