

TMA4145 Linear Methods Autumn 2012 Exercise set 8

1 Which of the following mappings are (i) linear, (ii) linear and bounded? Justify your answers.

a) $T: \mathbb{R} \to \mathbb{R}, \qquad t^{3} \mapsto 3t^{2},$ with $\|\cdot\|_{\mathbb{R}} = |\cdot|.$ b) $T: P_{n}(\mathbb{R}) \to P_{n}(\mathbb{R}), \qquad \sum_{j=0}^{n} a_{j}x^{j} \mapsto \sum_{j=1}^{n} ja_{j}x^{j-1},$ with $\|\sum a_{j}x^{j}\|_{P_{n}(\mathbb{R})} = \|(a_{0}, \dots, a_{n})\|_{\mathbb{R}^{n+1}}.$ c) $C^{1}([0, 1], \mathbb{R}) \cap BC([0, 1], \mathbb{R}) \to BC([0, 1], \mathbb{R}), \qquad f \mapsto f',$

with the $BC([0,1],\mathbb{R})$ -norm on the dense subspace $C^1([0,1],\mathbb{R})$ of $BC([0,1],\mathbb{R})$.¹

d)

 $BC(\mathbb{R}) \to \mathbb{R}, \qquad f \mapsto f(1)$

with the usual Euclidean norm on \mathbb{R} (as in (a)).

2 (Variant of Problem 4, 2007, Problem 3, 2008, and possibly others) Let

 $l_0 = \{\{x_j\}_{j \in \mathbb{N}} \colon \exists N \in \mathbb{N}, x_j = 0 \text{ for all } j \ge N\}$

be the space of sequences with finitely many non-zero entries. In all of this problem you may assume that the sequences are real, or complex, as you like.

a) Show that $\overline{l_0} = l_2$ in l_2 .

b) Let

$$c_0 := \{\{x_j\}_j \in l_\infty : \lim_{j \to \infty} x_j = 0\}$$

be the subspace of l_{∞} consisting of sequences with a vanishing limit. Show that $\overline{l_0} = c_0$ in l_{∞} .

c) Finally, show that $\overline{c_0} \subsetneq l_{\infty}$ in l_{∞} .

Hint: You may find (b) and (c) easier than (a).

¹Recall that a real-valued continuous function attains its maximum/minimum on a compact set, so that $C([0,1],\mathbb{R}) = BC([0,1],\mathbb{R})$ as sets and linear spaces. The notation $BC([0,1],\mathbb{R})$ is to emphasize that this space is equipped with the supremum norm. Note also, as stated above, that $C^1([0,1],\mathbb{R})$ is not a closed subspace of $BC([0,1],\mathbb{R})$; its closure (and completion with respect to the *BC*-norm) is all of $BC([0,1],\mathbb{R})$. This is a consequence of the Stone–Weierstrass theorem.

- **3** (Variant of Kreyszig 2.10:10) Find an unbounded linear transformation $l_{\infty}(\mathbb{R}) \to \mathbb{R}$.
- 4 (Kreyszig 2.10:15) The annihilator, M^{α} , of a non-empty subset $M \subset X$ of a normed space is the linear subspace of the dual X' consisting of those bounded linear functionals that vanish on M:

$$M^{\alpha} \stackrel{def.}{=} \{T \in X' \colon Tx = 0 \text{ for all } x \in M\}.$$

What is the annihilator M^{α} of

$$M = \{(1, 0, -1), (1, -1, 0), (0, 1, -1)\} \subset \mathbb{R}^3?$$

Hint: recall that $B(\mathbb{R}^3, \mathbb{R}) \cong \mathbb{R}^3$. Each bounded linear functional on \mathbb{R}^3 is given by a dot product $(x_1, x_2, x_3) \mapsto \sum_{j=1}^3 x_j y_j$. Thus M^{α} can be identified with a subspace of \mathbb{R}^3 .

5 (Challenge, Kreyszig 2.10:8) For $q, p \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$, l_p is the dual of l_q . For $p = 1, q = \infty$, this is not true: l_{∞} is the dual of l_1 , but l_1 is not the dual of l_{∞} . Show that l_1 is the dual of $c_0 \subset l_{\infty}$.