1 Which of the following mappings are (i) linear, (ii) linear and bounded? Justify your answers.
a)

$$
T: \mathbb{R} \rightarrow \mathbb{R}, \quad t^{3} \mapsto 3 t^{2},
$$

with $\|\cdot\|_{\mathbb{R}}=|\cdot|$.
b)

$$
T: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R}), \quad \sum_{j=0}^{n} a_{j} x^{j} \mapsto \sum_{j=1}^{n} j a_{j} x^{j-1},
$$

with $\left\|\sum a_{j} x^{j}\right\|_{P_{n}(\mathbb{R})}=\left\|\left(a_{0}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n+1}}$.
c)

$$
C^{1}([0,1], \mathbb{R}) \cap B C([0,1], \mathbb{R}) \rightarrow B C([0,1], \mathbb{R}), \quad f \mapsto f^{\prime}
$$

with the $B C([0,1], \mathbb{R})$-norm on the dense subspace $C^{1}([0,1], \mathbb{R})$ of $B C([0,1], \mathbb{R}) .{ }^{1}$
d)

$$
B C(\mathbb{R}) \rightarrow \mathbb{R}, \quad f \mapsto f(1)
$$

with the usual Euclidean norm on \mathbb{R} (as in (a)).

2 (Variant of Problem 4, 2007, Problem 3, 2008, and possibly others) Let

$$
l_{0}=\left\{\left\{x_{j}\right\}_{j \in \mathbb{N}}: \exists N \in \mathbb{N}, x_{j}=0 \text { for all } j \geq N\right\}
$$

be the space of sequences with finitely many non-zero entries. In all of this problem you may assume that the sequences are real, or complex, as you like.
a) Show that $\overline{l_{0}}=l_{2}$ in l_{2}.
b) Let

$$
c_{0}:=\left\{\left\{x_{j}\right\}_{j} \in l_{\infty}: \lim _{j \rightarrow \infty} x_{j}=0\right\}
$$

be the subspace of l_{∞} consisting of sequences with a vanishing limit. Show that $\overline{l_{0}}=c_{0}$ in l_{∞}.
c) Finally, show that $\overline{c_{0}} \subsetneq l_{\infty}$ in l_{∞}.

Hint: You may find (b) and (c) easier than (a).

[^0]3 (Variant of Kreyszig 2.10:10) Find an unbounded linear transformation $l_{\infty}(\mathbb{R}) \rightarrow \mathbb{R}$.

4 (Kreyszig 2.10:15) The annihilator, M^{α}, of a non-empty subset $M \subset X$ of a normed space is the linear subspace of the dual X^{\prime} consisting of those bounded linear functionals that vanish on M :

$$
M^{\alpha} \stackrel{\text { def. }}{=}\left\{T \in X^{\prime}: T x=0 \text { for all } x \in M\right\} .
$$

What is the annihilator M^{α} of

$$
M=\{(1,0,-1),(1,-1,0),(0,1,-1)\} \subset \mathbb{R}^{3} ?
$$

Hint: recall that $B\left(\mathbb{R}^{3}, \mathbb{R}\right) \cong \mathbb{R}^{3}$. Each bounded linear functional on \mathbb{R}^{3} is given by a dot product $\left(x_{1}, x_{2}, x_{3}\right) \mapsto \sum_{j=1}^{3} x_{j} y_{j}$. Thus M^{α} can be identified with a subspace of \mathbb{R}^{3}.

5 (Challenge, Kreyszig 2.10:8) For $q, p \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1, l_{p}$ is the dual of l_{q}. For $p=1, q=\infty$, this is not true: l_{∞} is the dual of l_{1}, but l_{1} is not the dual of l_{∞}. Show that l_{1} is the dual of $c_{0} \subset l_{\infty}$.

[^0]: ${ }^{1}$ Recall that a real-valued continuous function attains its maximum/minimum on a compact set, so that $C([0,1], \mathbb{R})=B C([0,1], \mathbb{R})$ as sets and linear spaces. The notation $B C([0,1], \mathbb{R})$ is to emphasize that this space is equipped with the supremum norm. Note also, as stated above, that $C^{1}([0,1], \mathbb{R})$ is not a closed subspace of $B C([0,1], \mathbb{R})$; its closure (and completion with respect to the $B C$-norm $)$ is all of $B C([0,1], \mathbb{R})$. This is a consequence of the Stone-Weierstrass theorem.

