

 $\boxed{1}$ (*Compositions of operators*)

- a) Show that the composition $S \circ T$ of two bounded operators $T \in B(X, Y)$ and $S \in B(Y, Z)$ is a bounded operator $X \to Z$ ¹
- b) What is $A \circ B$ when $A \in M_{m \times r}$ and $B \in M_{r \times n}$ are given by matrices (real or complex)?
- c) Find an example with $X = Y = Z$ showing that $T \circ S$ need not equal $S \circ T$.
- d) Find an example with X, Y, Z all different for which

$$
||S \circ T||_{B(X,Z)} < ||S||_{B(Y,Z)} ||T||_{B(X,Y)}.
$$

2 (Kreyszig 5.4:2) Let $[a, b] \subset \mathbb{R}$ be closed and bounded, $v \in C([a, b], \mathbb{R})$ a continuous function on [a, b], and $k \in C([a, b] \times [a, b] \times \mathbb{R}, \mathbb{R})$ a Lipschitz-continuous function such that

$$
|k(t, \tau, x_1) - k(t, \tau, x_2)| \le L|x_1 - x_2| \quad \text{ for all } \quad t, \tau \in [a, b], \quad x_1, x_2 \in \mathbb{R},
$$

where L is a fixed constant. Show that the nonlinear integral equation

$$
x(t) - \mu \int_a^b k(t, \tau, x(\tau)) d\tau = v(t), \qquad t \in [a, b],
$$

has a unique solution $x \in C([a, b], \mathbb{R})$ for any real constant μ with $|\mu| < \frac{1}{L(b)}$ $\frac{1}{L(b-a)}$.

 $|3|$ (*Kreyszig* 5.3:8)

a) Find the first three terms x_1, x_2, x_3 in the Picard iteration for

$$
x' = 1 + x^2, \qquad x(0) = 0.
$$

b) Verify that the terms involving t, \ldots, t^5 are in agreement with the Maclaurin expansion for the exact solution (you should find the solution as part of the problem; its series expansion you can look up).²

¹This gives $B(X) = B(X, X)$ the additional structure of an *algebra*: not only can we add and scale elements in $B(X)$, but also compose them (since $S \circ T \in B(X)$ whenever $S, T \in B(X)$). The study of such operator algebras is an important field of mathematics.

²A Maclaurin expansion is a Taylor expansion at the origin.

 $|4|$ (*Problem 2, 2000*)

a) Let $T \in L(BC([0,1],\mathbb{R}))$ be the linear transformation determined by

$$
(Tx)(t) = \int_0^1 ts\,x(s)\,ds.
$$

Show that: i) T is bounded, ii) $||T|| = \frac{1}{2}$ $rac{1}{2}$.

b) Find $x \in C([0,1], \mathbb{R})$ that satisfies

$$
x(t) = 4 + \int_0^1 ts \, x(s) \, ds, \qquad t \in [0, 1].
$$

5 (*Problem 2, 2003*) Let $A = (a_{ij})_{ij} \in M_{n \times n}(\mathbb{C})$ and $b \in \mathbb{C}^n$. Prove that the system

$$
x = Ax + b, \qquad x \in \mathbb{C}^n,
$$

can be solved by iteration if $\sum_{j=1}^{n} |a_{jk}| < 1$ for all $k = 1, \ldots, n$. Hint: Problem 2, Set 7.

 $\vert 6 \vert$ (Challenge)

a) Pick a suitable basis for $P_2(\mathbb{R})$ and express the linear operator

$$
T\colon P_2(\mathbb{R}) \to P_2(\mathbb{R}), \qquad Tp(x) = p(x) + xp'(x),
$$

as a matrix (in that basis). Determine $\ker(T)$ to conclude that T is an isomorphism from $P_2(\mathbb{R})$ onto itself. For which p is $Tp = p$?

b) Consider then the transformation

$$
T: P(\mathbb{R}) \to P(\mathbb{R}), \qquad Tp(x) = \sum_{j \ge 0} x^j p^{(j)}(x).
$$

Is it linear? Injective? An isomorphism on $P(\mathbb{R})$? For which $p \in P(\mathbb{R})$ is $Tp = p?$

c) Identify $P(\mathbb{R})$ with $l_0(\mathbb{R}) \subset l_{\infty}(\mathbb{R})$ (cf. Problem 2, set 8) via

$$
\sum_{j=0}^{n} a_j x^j \sim (a_0, \dots, a_n, 0, \dots) \quad \text{for} \quad p \in P_n(\mathbb{R}),
$$

and endow $P(\mathbb{R}) \cong l_0(\mathbb{R})$ with the l_{∞} -norm. Show that, for this choice of norm, $T: P(\mathbb{R}) \to P(\mathbb{R})$ is well-defined as a map between normed spaces, but unbounded.