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Chapter 1

Sets, spaces and sequences

1.1 Sets

Basic definitions
A set is a collection of elements, such as

{1, 2, 3}, {a, b, †, ‡}, or {all yellow horses}.

Sets are unordered. Two sets are equal if they contain the same elements,

{1, 2, 3} = {3, 2, 1},

whence the set containing no elements,

; = {}

is unique; it is called the empty set.

The cardinality of a finite set is its number of elements:

|{a, b}| = 2 and |;| = 0.

Ex. Some well-known infinite sets are the natural numbers,1

N = {1, 2, 3, . . .},

the integers,

Z = {. . . ,�1, 0, 1, . . .},

and the real, R, and complex numbers, C.

1.2 Membership and inclusions

Membership (possessive relations)
If x is an element in a set A we write

x 2 A or A 3 x,

and if not

x /2 A or A 63 x.

1In some textbooks also the zero element is included in the set of natural numbers.
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Ex.

The rationals can be constructed from elements in Z and N:

Q = {a/b : a 2 Z, b 2 N}
p
2 is a real number, but not a rational one:

p
2 2 R,

p
2 /2 Q.

Quantifiers
Quantifiers are used to abbreviate notation. The most important ones are:

8 Universal quantifier: ’For any’,’for all’

9 Existential quantifier: ’There exists’

! Uniqueness quantifier: ’a unique’

Ex. For any real number x there exists a unique real number �x with the property that the
sum of x and �x is zero:

8 x 2 R 9! (�x) 2 R; x+ (�x) = 0.

Inclusions
A set A is a subset of a set B if any element in A is also an element in B:

A ⇢ B (or A ✓ B)
def.() [x 2 A ) x 2 B]

A subset A ⇢ B can also be a proper subset of B:

A ( B
def.() A ⇢ B but A 6= B.

Ex.

The natural numbers is a subset of the set of non-negative integers, which is a proper
subset of the set of real numbers:

N ⇢ {0, 1, 2, . . .} ( R.

The empty set is a subset of any other set (including itself):

; ⇢ ; ⇢ {1, 2, 3}.

The continuously di↵erentiable real-valued functions on the real line is a subset of the
continuous functions:

C1(R,R) ⇢ C(R,R).

1.3 Set operations

Unions and intersections
The union of two sets A and B is the set of elements that are either in A or in B:

A [B
def.

= {x : x 2 A or x 2 B}.
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Their intersection is the collection of elements belonging to both A and B:

A \B
def.

= {x : x 2 A and x 2 B}.

Ex.

For finite sets:

{A,B,C} [ {A,C,D} = {A,B,C,D}, {A,B,C} \ {A,C,D} = {A,C}.

For two intervals:

(�1, 1) [ (0,1) = R, (�1, 1) \ (0,1) = (0, 1).

For any set A,

A [ ; = A, A \ ; = ;.

Set di↵erences and complements
The relative complement (or set di↵erence) of A in B contains any element in B not in A:

B \A def.

= {x : x 2 B and x 62 A}.

When B is understood to be known, this can also be expressed as {(A) or comp(A), the comple-
ment of A (in B).

Ex. The complement of the unit ball in three-dimensional Euclidean space is the set of
vectors of unit length or larger:

comp({x 2 R3 : |x| < 1}) = R3 \ {x 2 R3 : |x| < 1} = {x 2 R3 : |x| � 1}.

1.4 Relations

Cartesian products
The Cartesian product of two sets A and B is the set of ordered pairs (a, b) of elements a 2 A
and b 2 B:

A⇥B
def.

= {(a, b) : a 2 A, b 2 B}.

Ex.

The Cartesian product of {1, 2} and {†, ‡} has four elements:1

{1, 2}⇥ {†, ‡} = {(1, †), (1, ‡), (2, †), (2, ‡)}.

The Cartesian product of the set of points on the real line and the set of points in the
plane is the set of points in three-dimensional space:

R⇥ R2 = R3.

1In general, |A⇥B| = |A||B| for finite sets.
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Relations
A relation (or binary relation) on two sets A and B is a subset G of A⇥B:

G = {(a, b) 2 A⇥B : a satisfying some criteria, b satisfying some criteria}

The set A is called the relation’s domain, B its codomain, and G its graph. The graph of
a relation can most easily be thought of as connections (edges) between ’points’ in A and B
(vertices).

Ex.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

Anna

Niels

Math

Chem

Lit

Students enlisted for courses at a university is a relation on
the set of students and the set of courses. For example,

{(Anna, Math), (Anna, Chem), (Niels, Math), (Niels, Lit)}

is the graph of a relation on the domain {Anna, Niels} and
the codomain {Math, Chem, Lit}.

Relations can be defined on a product set A⇥A. For exam-
ple, ’’ is a relation on R⇥ R, whose graph is determined
by

(a, b) 2 G () a  b.

Functions
A function (or mapping) is a relation with the property that for every a in its domain there is
a unique b in its codomain such that (a, b) is in the graph.

8 a 2 A 9! b 2 B; (a, b) 2 G.

To indicate this, one often writes x, y and X,Y instead of a, b and A,B. Although functions are
completely described by their graphs, it is common to use an extra letter, such as f , to express
functional relations. One writes

f : X ! Y, x 7! f(x)

or simply

y = f(x)

to indicate the argument, x, and value, y, of a function.1

Ex.
The relation with graph

G = {(x, y) 2 R⇥ R : y = x2}

defines a function f : R ! R, x 7! x2.
The length of a two-vector

| · | : R2 ! [0,1), (x
1

, x
2

) 7! (x2

1

+ x2

2

)1/2

is a function from the set of vectors in the plane to the set of non-negative real numbers.

1Note the di↵erence between the function, written f , f(·), or x 7! f(x), and its value, f(x), at a particular
point x.
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1.5 Invertibility

Range and surjectivity
The range (or image) of a function f : X ! Y is the set of elements y = f(x) 2 Y in its codomain
for which there is an x 2 X its domain:

ran(f)
def.

= {f(x) : x 2 X}.

A function is surjective (or onto) if its range equals its codomain,

f surjective
def.() ran(f) = Y.

This is the same as that, for every y 2 Y , there is an x 2 X with f(x) = y.

Ex.

The range of the function

f : R ! R, x 7! x2

is ran(f) = [0,1), whence it is not surjective.

Defined di↵erently,

f : R ! [0,1), x 7! x2

is surjective.

The di↵erential operator d
dx : C

1(R,R) ! C(R,R) is surjective, since

for any f 2 C(R,R) there exists F =



x 7!
Z x

0

f(t) dt

�

2 C1(R,R) such that
d

dx
F = f.

Injectivity
A function is injective (or one-to-one) if di↵erent elements in its domain are mapped onto
di↵erent elements in its codomain,

f injective
def.() [f(x

1

) = f(x
2

) =) x
1

= x
2

]

Put di↵erently, for any y 2 Y there is at most one x 2 X with f(x) = y.

Ex.

The function

f : R ! R, x 7! x2

is not injective, since x2 = (�x)2.

The function

f : N ! N, n 7! 2n

that assigns to each natural number twice its value is injective, since

2m = 2n =) m = n, m, n 2 N.
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The di↵erential operator d
dx : C

1(R,R) ! C(R,R) is not injective, since, for f 2
C1(R,R),

d

dx
(f(x) + c) =

d

dx
f(x) for all c 2 R.

Invertibility
A function that is both injective and surjective is called bijective (or invertible). Since its graph
covers the entire codomain (surjectivity), and since for each y 2 Y there is exactly one x 2 X
with f(x) = y (injectivity), there exists a function

f�1 : Y ! X, y 7! x,

called the inverse of f . An invertible function satisfies

f�1(f(x)) = x for all x 2 X and f(f�1(y)) = y for all y 2 Y,

or, shorter,

f�1 � f = idX and f � f�1 = idY .

N.b. An injection is always invertible on its range, but not necessarily on the entire codomain.

Ex.

The function x 7! x2 is invertible on [0,1) (which is easily seen from its graph).

The map n 7! 2n, N ! 2N, is a bijection between the set of positive natural numbers
and the set of even numbers. In this sense the cardinality of the set of natural numbers
and the cardinality of the set of even numbers are the same.

The function defined by

f(a, b) = a+ bi

is a bijection R2 ! C, from the real onto the complex plane.

One can prove that there is no invertible function from N to R. In this sense, the
cardinality of the real numbers is greater than that of the natural numbers (the natural
numbers are said to be countable, whereas the real numbers are uncountable).

The di↵erential operator

1� @2

x : C
1
2⇡-per(R,R) ! C1

2⇡-per(R,R)

from the set of 2⇡-periodic infinitely di↵erentiable real-valued functions onto
itself is a bijection. The operator 1 + @2

x on the same set of functions is not (can you
see why?). This means that the di↵erential equation

f 00 � f = 0

has exactly one 2⇡-periodic solution (namely f ⌘ 0), whereas the equation

f 00 + f = 0

has many.
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A major question in linear algebra is: When is the matrix A in an equation

Ax = b

invertible? Here, A is seen as an operator Rn ! Rn, mapping vectors onto vectors.

1.6 Vector spaces

Definition
A real vector space is a set X endowed with an operation called addition,

X ⇥X ! X, (x, y) 7! x+ y,

an operation called scalar multiplication,

R⇥X ! X, (�, x) 7! �x,

an element 0 2 X called the zero vector, and for each x 2 X an additive inverse �x 2 X,
such that for any elements x, y, z 2 X and real numbers �, µ 2 R the following properties hold:

(i) x+ 0 = x, (additive identity)

(ii) x+ (�x) = 0, (additive inverse)

(iii) x+ y = y + x, (symmetry)

(iv) x+ (y + z) = (x+ y) + z, (associativity)

(v) 1x = x, (multiplicative identity)

(vi) �(µx) = (�µ)x, (compatibility)

(vii) �(x+ y) = �x+ �y, (distributivity)

(viii) (�+ µ)x = �x+ µx, (distributivity)

The elements of X are called vectors. If the field of scalars R is replaced with C one obtains
instead a complex vector space.1

N.b. 1 The notion of a vector space and that of a linear space are identitical.

N.b. 2 The elements of a real vector space need not be real-valued. It is the field of scalars that
determines whether a vector space is calld real or complex.

Ex.

(R,+, ·), the set of real numbers R endowed with the usual addition and multiplication
is a real vector space.

More generally, Euclidean space

Rn = {(x
1

, . . . , xn) : xj 2 R for j = 1, 2, . . . , n.}

endowed with componentwise addition

(x
1

, . . . , xn) + (y
1

, . . . , yn) = (x
1

+ y
1

, . . . , xn + yn)

1It is possible to define a vector space over any field F, but we shall not use this.
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and componentwise scalar addition

�(x
1

, . . . , xn) = (�x
1

, . . . ,�xn)

is a real vector space for any natural number n 2 N.

The set of real-valued continuous functions on an interval I ⇢ R,

C(I,R) = {f : I ! R such that f is continuous}

is a real vector space with the zero function f ⌘ 0 as additive identity and �f as
additive inverse, when one defines

(f + g)(t) := f(t) + g(t),

(�f)(t) := �f(t),

(�f)(t) := �f(t).

All three examples above can be turned into complex vector spaces by replacing R with
C, i.e., when both the elements in the space and the field of scalars are replaced. These
are the spaces

C, Cn and C(I,C).

The same spaces can also be considered as real vector spaces if the field of scalars is
kept to be R. Often, however, spaces that involve complex numbers are regarded as
complex vector spaces.

The essential property of a vector space is linearity : any line

{(x, y) = (r cos(✓), r sin(✓)) 2 R2 : ✓ = ✓
0

}

is a vector space (addition and scalar mulitplication as in R2), whereas a closed ball

{(x, y) = (r cos(✓), r sin(✓)) 2 R2 : 0  r  �}

is not (adding or scaling vectors might get one out of the space).

1.7 Normed spaces

Definition
A normed space is a vector space X endowed with a function

X ! [0,1), x 7! kxk,

called the norm on X, which satisfies:

(i) k�xk = |�| kxk, (positive homogeneity)

(ii) kx+ yk  kxk+ kyk, (triangle inequality)

(iii) kxk = 0 if and only if x = 0, (positive definiteness)

for all scalars � and all elements x, y 2 X. A vector space may allow for many di↵erent norms,
but not all vector spaces are normable.1

1Using the axiom of choice it is possible to assign a norm to any vector space, but this norm may not correspond
to any natural structure of the space. For example, there is no norm such that C

1(R,R), the set of infinitely
di↵erentiable real-valued functions on R, is complete.
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Ex.

The vector space Rn with the usual addition and scalar multiplication allows for several
norms, for example:

the Euclidean norm

k(x
1

, . . . , xn)kl2 =
�

x2

1

+ . . .+ x2

n

�

1/2

the maximum norm

k(x
1

, . . . , xn)kl1 = max{|x
1

|, . . . , |xn|},

and the summation norm

k(x
1

, . . . , xn)kl1 = |x
1

|+ . . .+ |xn|.

These are all special cases of the (finite-dimensional) lp-norm k(x
1

, . . . , xn)klp =
�

Pn
j=1

|xj |p
�

1/p
,

1  p  1.

Proof (of the example)

For both k · kl2 , k · kl1 and k · kl1 , it is clear that they are non-negative functions, and that

kxk = 0 () x = (x
1

, . . . , xn) = (0, . . . , 0).

In addition,

k�xkl2 =
�

(�x
1

)2 + · · ·+ (�xn)
2

�

1/2
= |�|

�

x2

1

+ · · ·+ x2

n

�

1/2
= |�|kxkl2 ,

and similarly for k · kl1 and k · kl1 .

The triangle inequality for k · kl1 and k · kl1 follows from that on R:

kx+ ykl1 =
n
X

j=1

|xj + yj | 
n
X

j=1

(|xj |+ |yj |) =
n
X

j=1

|xj |+
n
X

j=1

|yj | = kxkl1 + kykl1 ,

kx+ ykl1 = max{|x
1

+ y
1

|, . . . , |xn + yn|}
 max{|x

1

|+ |y
1

|, . . . , |xn|+ |yn|}
 max{|x

1

|, . . . , |xn|}+max{|y
1

|, . . . , |yn|}
= kxkl1 + kykl1 .

The triangle inequality for k · kl2 is a consequence of the Cauchy–Schwarz inequality,
which we will prove later.
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Ex.

The space of real- (or complex-) valued bounded and continuous functions on an
interval (open or closed), BC(I,R), becomes a normed vector space when endowed with
the supremum norm1

kfk1 = sup
x2I

|f(x)|.

If I = [a, b] it follows from the extreme value theorem that BC([a, b],R) = C([a, b],R)
(as sets and linear spaces) and

kfk1 = sup
x2[a,b]

|f(x)| = max
x2[a,b]

|f(x)|.

If I = (a, b) is either infinite or does not contain its end points, then BC((a, b),R) (
C((a, b),R). An example of this strict inclusion is the function x 7! 1/x on (0,1). It is
continuous, but

[x 7! 1/x] 62 BC((0, 1),R),

since supx2(0,1) |1/x| = 1.

Equivalence of norms
Two norms k ·k

1

and k ·k
2

on a vector space X are said to be equivalent if there exists a number
c 2 R such that

c�1kxk
1

 kxk
2

 ckxk
1

for all x 2 X.

Ex.

The maximum and summation norms are equivalent on Rn, since

max
1jn

|xj | 
n
X

j=1

|xj | and
n
X

j=1

|xj |  n max
1jn

|xj |.

Hence

n�1kxkl1  kxkl1  nkxkl1 for x = (x
1

, . . . , xn).

One can show that, on a finite-dimensional vector space, any two norms are equivalent.
In particular, any norm on Rn is equivalent to the Euclidean norm.

1.8 Metric spaces

Definition

Let X be a set and d : X ⇥X ! [0,1) a function such that

(i) d(x, y) = d(y, x), (symmetry)

(ii) d(x, y)  d(x, z) + d(z, y), (triangle inequality)

(iii) d(x, y) = 0 if only if x = y. (non-degeneracy)

1The supremum of a set A ⇢ R is the smallest M 2 R such that a  M for all a 2 A. If no such finite M

exists, then sup(A) = 1. One furthermore defines sup(;) = �1. Thus, the supremum always exists. In a similar
fashion, the infimimum of a set A is the largest lower bound on the set; it can be defined as inf(A) = � sup(�A),
where �A = {�a 2 R : a 2 A}.
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Then the pair (X, d) is called a metric space and the function d is called a metric or distance
on X.

A subset M ⇢ X is called a subspace of X, written (M,d) ⇢ (X, d), if M is endowed with the
same metric as X, called the induced metric on M . Subspaces of metric spaces are themselves
metric spaces.

Ex.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

1

1 1

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

x

y

Any set becomes a metric space when endowed with the discrete met-
ric

d(x, y) :=

(

1, x 6= y,

0, x = y.

Rn becomes a metric space when endowed with the Euclidean dis-
tance

d(x, y) := |x� y| =
�

(x
1

� y
1

)2 + . . .+ (xn � yn)
2

�

1/2
.

The supremum norm induces a metric on the set of bounded and con-
tinuous functions on an interval:

d(f, g) = kf � gk1 = sup
x2I

|f(x)� g(x)|.

This makes (BC(I,R), k · k1) a metric space.

} Normed spaces are metric spaces

If k · k is a norm on X, then d(x, y) := kx� yk is a metric on X.

Proof

The distance is non-negative and well defined, since

0  kx� yk
| {z }

d(x,y)

 kxk+ kyk < 1, for x, y 2 (X, k · k).

Symmetry: d(x, y) = kx� yk = ky � xk = d(y, x).

Triangle inequality: d(x, y) = kx� yk  kx� zk+ kz � yk = d(x, z) + d(z, y).

Non-degeneracy: d(x, y) = kx� yk = 0 () x� y = 0 () x = y.

12



N.b. Metric spaces need not be vector spaces. The set of positive real numbers, R
+

= (0,1),
with the metric given by d(x, y) := |x � y| is a metric space, but it is not a linear space, since it
contains neither an additive identity (0) nor additive inverses (�x).

1.9 Balls and spheres

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

x
0

r

Let (X, d) be a metric space with distance d : X ⇥X ! [0,1).

Two important concepts are the ball of radius r > 0 centered at x
0

2 X,

Br(x0

) := {x 2 X : d(x, x
0

) < r},

and the sphere of radius r > 0 centered at x
0

2 X,

Sr(x0

) := {x 2 X : d(x, x
0

) = r}.

For normed spaces, or other vector spaces that are also metric spaces, we simply write

Br := Br(0) and Sr = Sr(0),

for balls and spheres centered at the origin (zero element). The sets B
1

and S
1

are called the unit
ball and unit sphere, respectively.

Ex.

The ball of radius 2 centered at (1, 0) in Euclidean space R2:

B
2

((1, 0)) = {(x, y) 2 R2 : (x� 1)2 + y2 < 4}.

Sequence spaces are spaces in which each element

x = {xn}n2N = (x
1

, x
2

, . . .)

is a sequence (usually of real or complex numbers). The most important ones are the
so-called lp-spaces:

– Let l1 be the space of sequences {xj}j2N = (x
1

, x
2

, . . .) for which

kxkl1 = sup
j2N

|xj | < 1.

Then the sequence (1/2, 2/3, 3/4, . . .) 2 S
1

in l1 (since supj2N | j
j+1

| = 1).

– For any p � 1, let lp be the space of sequences {xj}j2N = (x
1

, x
2

, . . .) for which

kxklp =
�

X

j2N
|xj |p

�

1/p
< 1.

Let further

e
1

= (1, 0, 0, . . .), e
2

= (0, 1, 0, 0 . . .) and ej = (. . . , 0, 1, 0, . . .), j 2 N.

Then

ej 2 S
1

for all j 2 N,

but

d(ei, ej) = kei � ejklp = (|1|p + |� 1|p)1/p = 21/p � 1 whenever i 6= j.

13



Note that such a sequence of elements could never exist in Rn (or any other finite-
dimensional vector space).

The unit ball in BC([0, 1],R) consists of all functions whose graph y = f(x) lies strictly
between the lines y = ±1.

N.b. The unit ball may look quite di↵erent depending on the underlying metric/norm. The
following illustration captures this in the case of the lp-norm on R2. Homogeneity and the triangle
inequality however imply that a ball in any metric given by a norm will always be a convex set in
the underlying space.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

p = 2p = 1 2 < p < 1 p = 1

The unit sphere for di↵erent metrics: kxklp = 1 in R2.

1.10 Interior points, boundary points, open and closed sets

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

Let (X, d) be a metric space with distance d : X ⇥X ! [0,1).

A point x
0

2 D ⇢ X is called an interior point in D if
there is a small ball centered at x

0

that lies entirely in D,

x
0

interior point
def() 9 " > 0; B"(x0

) ⇢ D.

A point x
0

2 X is called a boundary point of D if any
small ball centered at x

0

has non-empty intersections with
both D and its complement,

x
0

boundary point
def() 8 " > 0 9 x, y 2 B"(x0

); x 2 D, y 2 X \D.

The set of interior points in D constitutes its interior, int(D), and the set of boundary
points its boundary, @D. D is said to be open if any point in D is an interior point and
it is closed if its boundary @D is contained in D; the closure of D is the union of D and
its boundary:

D := D [ @D.

Alternative notations for the closue of D in X include DX ,
clos(D) and clos(D;X).1

Ex.

In R with the usual distance d(x, y) = |x � y|, the interval (0, 1) is open, [0, 1) neither
open nor closed, and [0, 1] closed.2

1An alternative to this approach is to take closed sets as complements of open sets. These two definitions,
however, are completely equivalent. In particular, a set is open exactly when it does not contain its boundary.

2Equivalent norms induce the same topology on a space (i.e., the same open and closed sets). Since all norms
on Rn are equivalent, it is unimportant which norm we choose.
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The set

D := {(x, y) 2 R2 : x > 0, y � 0}

is neither closed nor open in Euclidean space R2 (metric coming from a norm, e.g.,
d(x, y) = kx � ykl2 = ((x

1

� y
1

)2 + (x
2

� y
2

)2)1/2), since its boundary contains both
points (x, 0), x > 0, in D and points (0, y), y � 0, not in D. The closure of D is

D = {(x, y) 2 R2 : x � 0, y � 0}.

An entire metric space is both open and closed (its boundary is empty).

In l1,

B
1

63 (1/2, 2/3, 3/4, . . .) 2 B
1

.

For a general metric space, the closed ball

B̃r(x0

) := {x 2 X : d(x, x
0

)  r}

may be larger than the closure of a ball, Br(x0

). If we let X be a space with the discrete
metric,

(

d(x, x) = 0,

d(x, y) = 1, x 6= y.

Then

B
1

(x
0

) = {x
0

}, so that B
1

(x
0

) = {x
0

} = {x
0

}.

But

B̃
1

(x
0

) = X.

} (Open) balls are open

Let (X, d) be a metric space, x
0

a point in X, and r > 0. Then Br(x0

) is open in X with respect
to the metric d.

Proof

Pick x 2 Br(x0

). Then

d(x, x
0

) < r =) 9 " > 0; d(x, x
0

) < r � "

=) d(y, x) < " implies d(y, x
0

)  d(y, x) + d(x, x
0

) < "+ (r � ") = r.

This means: y 2 Br(x0

) if y 2 B"(x), i.e. B"(x) ⇢ Br(x0

).

1.11 Limits

Let (X, dX) and (Y, dY ) be metric spaces, and f : X ! Y a function between them.

Sequential limits
A sequence {xn}n2N ⇢ X is said to converge towards x

0

2 X if for any " > 0 there is a natural
number n" with the property that xn 2 B"(x0

) for all n � n":

lim
n!1

xn = x
0

def() 8 " > 0 9 n" 2 N; xn 2 B"(x0

) for n � n".
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We then say that xn tends to x
0

as n tends to infinity, written

xn ! x
0

(as n ! 1), or xn
n!1! x

0

.

The point x
0

is called the limit of the sequence {xn}n2N.

} Sequential limits are zero limits for the distance function

Since {dX(xn, x0

)}n2N is a sequence in R it is easily verified that

xn ! x
0

() dX(xn, x0

) ! 0.

Proof

dX(xn, x0

) ! 0 () 8" > 0 9n"; dX(xn, x0

) 2 B"(0) (in R) for n � n"

() 8" > 0 9n"; dX(xn, x0

) < " for n � n"

() 8" > 0 9n"; xn 2 B"(x0

) (in X) for n � n"

() xn ! x
0

.

Continuous limits (continuity)
We say that f(x) converges to y

0

in Y as x converges to x
0

in X if for any " > 0 there exists
� > 0 such that f(x) 2 B"(y0) when x 2 B�(x0

):

lim
x!x0

f(x) = y
0

def() 8 " > 0 9 � > 0; [dX(x, x
0

) < � =) dY (f(x), y0) < "].

Equivalent ways of writing this are

f(x) ! y
0

as x ! x
0

, and f(x)
x!x0! y

0

.

A function f satisfying this is said to be continuous at the point x
0

. It is continuous on a
set D if it continuous at all points x

0

2 D, and simply continuous if its continuous on all of its
domain.

Ex.

The function

f : x 7! sin(x)

x
, x 2 R \ {0},

may be extended to a bounded and continuous function R ! R, since

f(x)
in R! 1 as x

in R! 0.

} In metric spaces continuous and sequential limits agree

(i) lim
x!x0

f(x) = y () (ii) lim
n!1

f(xn) = y for any sequence such that lim
n!1

xn = x
0

.

Proof

Assume that (i) holds, i.e.,

dY (f(x), y) < " for dX(x, x
0

) < �.

For any sequence {xn}n2N ⇢ X with limn!1 xn = x
0

, there exists N 2 N with

dX(xn, x0

) < � for n � N.
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Thus, according to (i),

dY (f(xn), y) < " for n � N.

This shows that (i) is su�cient for (ii) to hold.

Now assume that (i) does not hold, i.e., there is an " > 0 such that for any � > 0 there exists
x� with

dX(x�, x0

) < � while dY (f(x�), y) � ".

Thus, any sequence of �n
n!1! 0 yields a sequence of numbers xn := x�n with

xn ! x
0

as n ! 1 while dY (f(xn), y) � ".

This violates (ii) and shows that (i) is necessary for (ii) to hold.

Ex.

The sequence of functions given by

f
0

(x) = 1, f
1

(x) = 1� x2

3!
, fn(x) =

n
X

j=0

(�1)jx2j

(2j + 1)!
n 2 N,

converges in BC([0, 1],R). Namely, let f(x) = sin(x)
x , extended to a bounded and

continuous function on R as in the preceding example. Since

sinx
Taylor

= x� x3

3!
+ . . .+

(�1)nx2n+1

(2n+ 1)!
± cos(⇠)x2n+3

(2n+ 3)!
, 0 < |⇠| < |x|,

we have

sinx

x
=

n
X

j=0

(�1)jx2j

(2j + 1)!
± cos(⇠)x2n+2

(2n+ 3)!
, 0 < |⇠| < |x|,

so that

kfn � fkBC([0,1],R) = sup
x2[0,1]

�

�

�

�

n
X

j=0

(�1)jx2j

(2j + 1)!
� sinx

x

�

�

�

�

 sup
x,⇠2[0,1]

�

�

�

�

cos(⇠)x2n+2

(2n+ 3)!

�

�

�

�

=
1

(2n+ 3)!
! 0 as n ! 1.

} Limits are unique

If limn!1 xn = x and limn!1 xn = y, then x = y.

Proof

In view of the assumptions, and using the triangle inequality,

0  d(x, y)  d(x, xn) + d(xn, y) ! 0 as n ! 1.

Then d(x, y) = 0 implies x = y by the axioms of a metric space.
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Ex.

The sequence

x
1

= 0.9, x
2

= 0.99, x
3

= 0.999, and so forth,

converges towards 0.999 . . . in R, but also towards 1. Hence

0.999 . . . = 1.

Accumulation points
A concept related to convergence is that of an accumulation point of a subset M ⇢ X:

x
0

accumulation point for M
def() 9{xn}n2N ⇢ M ; xn ! x

0

.

Equivalently, any small ball B"(x0

) centered at x
0

contains a point in M .

N.b. The limit of a sequence is always an accumulation point for that sequence, but a (non-
convergent) sequence may have several, or no, accumulation points. An accumulation point for a
sequence is, per definition, the limit of a subsequence of that sequence.

Ex.

0 is an accumulation point for {1/n}n2N, but also for {1, 1, 2, 1

2

, 3, 1

3

, 4, 1

4

, . . .}.

Relationship between limits and closures
} Closures are the total of sequential limits of interior points

By comparing the definitions of boundary and interior points with that of a sequential limit, one
obtains that

clos(D;X) = {x 2 X : x = lim
n!1

xn for some sequence {xn}n2N ⇢ D}

Proof

Assume that x 2 D. Then, according to the definitions of interior and boundary points, any
small ball B

1/n(x) contains a point xn 2 D. This means that {xn}n2N ⇢ D converges to x.

Now, assume instead that there is a sequence

{xn}n2N ⇢ D with lim
n!1

xn = x in X.

Then dX(xn, x) ! 0 as n ! 1, so that

8 " > 0 9 xn" 2 B"(x).

Since xn" 2 D, either x is an interior point (for small " there are only points from D in
B"(x)), or x is a boundary point (B"(x) contains also points from the complement of D); in
any case x 2 D.

Ex.

In l1,

( 1
2

, 2

3

, 3

4

, . . .) 2 B
1

,

since it is the limit of the sequence x
1

= ( 1
2

, 1

2

, . . .), x
2

= ( 1
2

, 2

3

, 2

3

, . . .), x
3

= ( 1
2

, 2

3

, 3

4

, 3

4

, . . .),

and so forth (the elements of which are all in B
1

in l1). To see this, let x
0

:= { j
j+1

}j�1

.
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Then

kx
0

� xnkl1 = sup
j�n

�

�

�

j

j + 1
� n

n+ 1

�

�

�

=
�

�

�

1� n

n+ 1

�

�

�

=
1

n+ 1
! 0 as n ! 1,

in view of that the function j 7! j
j+1

is monotone increasing and bounded by 1. Thus

B
1

3 xn
in l1! ( 1

2

, 2

3

, 3

4

, . . .) as n ! 1.

1.12 Completeness

Cauchy sequences
A sequence {xn} in a metric space (X, d) is a Cauchy sequence (or simply Cauchy) if the
distance between its members tends to zero:

{xn} Cauchy
def() d(xn, xm) ! 0 as m,n ! 1.

Equivalently,

8 " > 0 9 n"; d(xm, xn) < " whenever m,n � n".

Ex.

The sequence {xn}n�1

of rational numbers xn =
Pn

k=0

1

k! is a Cauchy sequence with
respect to the distance d(x, y) = |x� y|. For each m � n � 1,

|xm � xn| =
m
X

k=n+1

1

k!
 1

(n+ 1)!

m�(n+1)

X

k=0

1

(n+ 1)k

=
1

(n+ 1)!

1� ( 1

n+1

)(m�n)

1� 1

n+1

n�1

 2

(n+ 1)!
! 0 as m � n ! 1.

Note, however, that limn!1 xn = e 62 Q.

The sequence {xn}n�1

of functions xn : t 7!
Pn

k=0

tk

k! is Cauchy in BC([0, 1],R). For
each m � n � 1,

kxm � xnkBC([0,1],R) = sup
t2[0,1]

�

�

�

m
X

k=n+1

tk

k!

�

�

�


m
X

k=n+1

1

k!
! 0 as m � n ! 1.

In this case limn!1 xn = [t 7! et] 2 BC([0, 1],R).1

} Convergent sequences are Cauchy sequences

In any metric space

xn ! x as n ! 1 implies d(xm, xn) ! 0 as m,n ! 1.

N.b. The opposite is not true in general.

1The exponential function t 7! e

t is often expressed as exp to separate it from the real number e = exp(1).
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Proof

Let " > 0. Since xn ! x there exists n" such that

d(x, xn) < "/2 for n � n".

Hence

d(xm, xn)  d(xm, x) + d(x, xn) < "/2 + "/2 = ",

for m,n � n".

} Cauchy sequences are bounded

If (X, k · k) is a normed space, and {xn}n ⇢ X is Cauchy, then

sup
n�1

kxnk < B for some B 2 R.

Proof

According to the definition of a Cauchy sequence, there exists n
1

such that

kxm � xnk < 1 for m,n � n
1

.

If n  n
1

,

kxnk  max
1nn1

kxnk =: B̃,

and, if n � n
1

,

kxnk  kxn � xn1k+ kxn1k < 1 + kxn1k.

Hence, kxnk  B := max{B̃, 1 + kxn1k} for all n 2 N.

Complete metric spaces and Banach spaces
A metric space in which every Cauchy sequence converges is called complete. A complete normed
space is called a Banach space.

Ex.

R is complete with respect to the metric d(x, y) = |x� y|. Hence, (R, | · |) is a Banach
space.

Both Rn and Cn are Banach spaces with respect to the norm kxkl2 = (
Pn

j=1

|xj |2)1/2.1

The space of square-summable sequences

l
2

=
n

{xj}j�1

:
1
X

j=1

|xj |2 < 1
o

is complete with respect to the norm

kxkl2 =
�

1
X

j=1

|xj |2
�

1/2
.

So is l1, and lp, for any p � 1.

1Note that |zj |2 = a

2
j + b

2
j for complex numbers xj = aj + ibj .
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For any interval I ⇢ R, BC(I,R) andBC(I,C), with norms given by kxk = supt2I |x(t)|,
are Banach spaces.

} Subsets of complete metric spaces are complete if and only if they are closed

Let M ⇢ X be a subset of a complete metric space (X, d), i.e. (M,d) ⇢ (X, d). Then

M complete () M closed.

Proof

Assume that M is complete. Closedness means

M 3 xn ! x 2 X =) x 2 M.

So assume that {xn} ⇢ M converges towards x 2 X. Since any convergent sequence is
Cauchy, {xn} ⇢ M is Cauchy. But since M is complete, {xn} converges to an element
y 2 M . By uniqueness of limits, y = x. Thus M is closed.

Contrariwise, assume that M is closed and let {xn} ⇢ M be a Cauchy sequence. Recall that
(M,d) ⇢ (X, d) carry the induced metric d. Thus

{xn} Cauchy in M =) {xn} Cauchy in X

X complete

=) M 3 xn ! x 2 X

M closed

=) x 2 M.

Thus M is complete.

Ex.

Euclidean space Rn can be viewed as a subspace of l
2

:

Rn = {(x
1

, . . . , xn, 0, 0 . . .) 2 l
2

}.

In this respect, Rn is both a complete and a closed subspace of l
2

(any limit of points
in Rn remains in Rn).

} BC is complete

Let I ⇢ R be a non-empty interval. Then BC(I,R) and BC(I,C) are Banach spaces.

Proof

The proof is the same for R and C. Also, we already know that BC(I,R) is a normed and
linear space, so we only need to show that it is complete.

Let {xn}n be a Cauchy sequence in BC(I,R). We want to prove that it converges to a limit
function x

0

2 BC(I,R).

Pointwise convergence: For any t 2 I,

|xn(t)� xm(t)|  sup
t2I

|xn(t)� xm(t)| = kxn � xmkBC(I,R)
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Thus

{xn}n Cauchy in BC(I,R) =) {xn(t)}n Cauchy in R.

R being complete, there exists a limit in R:

8 t 2 I 9 x
0

(t) := lim
n!1

xn(t) in R.

Define a function x
0

by x
0

:= [t 7! x
0

(t)].

Boundedness: For each t 2 I there exists nt 2 N such that |x
0

(t)� xnt(t)| < ". Thus

|x
0

(t)|  |x
0

(t)� xnt(t)|+ |xnt(t)| < "+ kxntkBC(I,R)  "+ sup
n2N

kxnkBC(I,R) < C,

since Cauchy sequences are bounded. Taking the supremum over all t 2 I yields that

kx
0

kBC(I,R) < C.

Convergence in norm: A similar argument shows that xn ! x
0

in BC(I,R). Let " > 0.
For any t 2 I there exists mt 2 N such that

|x
0

(t)� xm(t)| < "

2
for m � mt.

Also, there exists n" 2 N such that

kxn � xmkBC(I,R) <
"

2
for m,n � n".

Choose m � max{mt, n"}. Then

|xn(t)� x
0

(t)|  |xn(t)� xm(t)|+ |xm(t)� x
0

(t)|  kxn � xmkBC(I,R) + |xm(t)� x
0

(t)| < "

2
+

"

2
= " for n � n".

Taking the supremum over t 2 I yields that

kxn � x
0

kBC(I,R) < " for n � n".

Thus xn ! x
0

in BC(I,R).

Continuity: To prove that x
0

is continuous, pick t 2 I and let " > 0. Since xn ! x
0

in
BC(I,R) there exists n" 2 N such that

kx
0

� xnkBC(I,R) <
"

3
for n � n".

Fix such an n. Since xn is continuous, there exists � := �(n, ") > 0 with

|xn(s)� xn(t)| <
"

3
for |s� t| < �.

All taken together,

|x
0

(s)� x
0

(t)| < |x
0

(s)� xn(s)|+ |xn(s)� xn(t)|+ |xn(t)� x
0

(t)|
 kx

0

� xnkBC(I,R) + |xn(s)� xn(t)|+ kxn � x
0

kBC(I,R)

<
"

3
+

"

3
+

"

3
= " for |s� t| < �.

Hence, x
0

is continuous.
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This shows that every Cauchy sequence {xn}n ⇢ BC(I,R) converges (in BC(I,R)) towards
an element x

0

2 BC(I,R). Thus BC(I,R) is complete.1

} The space of square-summable sequences is complete

The space of square-summable (complex or real) sequences is a Banach space with respect to the
norm kxkl2 = (

P

j�1

|xj |2)1/2.

Proof

This time we pursue the proof for complex-valued sequences (it is no di↵erent from the proof
for real-valued sequences).

Pointwise convergence: Take {xn}n Cauchy in l
2

, with xn = (xn(1), xn(2), . . .). Then

|xn(j)� xm(j)| 
⇣

1
X

j=1

|xn(j)� xm(j)|2
⌘

1/2

= kxn � xmkl2 ! 0 as m,n ! 1.

Thus, for each j 2 N, {xn(j)}n is Cauchy in C, and thus convergent:

8 j 2 N 9 x
0

(j) = lim
n!1

xn(j) 2 C.

Let x
0

:= (x
0

(1), x
0

(2), . . .).

Boundedness: For any j 2 N there exists nj 2 N such that

|x
0

(j)� xn(j)|2 <
1

2j
for n � nj .

For any finite N 2 N, choose n � max
1jN nj . Then

⇣

N
X

j=1

|x
0

(j)|2
⌘

1/2


⇣

N
X

j=1

|x
0

(j)� xn(j)|2
⌘

1/2

+
⇣

N
X

j=1

|xn(j)|2
⌘

1/2

<
⇣

N
X

j=1

1

2j

⌘

1/2

+ kxnkl2  1 + sup
n2N

kxnkl2 < c,

since Cauchy sequences are bounded. The right-hand side is independent of N , so we may
now let N ! 1, yielding that

kx
0

kl2 < c, whence x
0

2 l
2

.

Convergence in norm: Let " > 0. As above, we can find nj such that

|x
0

(j)� xm(j)|2 <
"/2

2j
for m � nj ,

and

N
X

j=1

|x
0

(j)� xm(j)|2 <

N
X

j=1

"/2

2j
 "/2 for m � max

1jN
nj .

1The same proof can be used to show that the space of bounded and uniformly continuous functions

BUC(I,R) is complete. Since continuous functions are uniformly continuous on compact intervals, BUC([a, b],R) =
BC([a, b],R) for any compact interval [a, b] ⇢ R.
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Using this,

⇣

N
X

j=1

|x
0

(j)� xn(j)|2
⌘

1/2


⇣

N
X

j=1

|x
0

(j)� xm(j)|2
⌘

1/2

+
⇣

N
X

j=1

|xm(j)� xn(j)|2
⌘

1/2

 "/2 + kxn � xmkl2 .

Since {xn}n is Cauchy in l
2

there exists n" 2 N such that

kxn � xmkl2 < "/2 for m,n � n".

Select m such that this holds (for example, m � n" +max
1jN nj). Then

0

@

N
X

j=1

|x
0

(j)� xn(j)|2
1

A

1/2

< " for n � n".

Since n" does not depend on N , we may let N ! 1, to obtain that

kx
0

� xnkl2 < " for n � n".

Hence, xn
in l2! x

0

, and l
2

is complete.

1.13 Completions

Every metric space (and every normed space) can be made complete. To make this precise,
recall that an isomorphism is a bijective (on-to-one and onto) map that preserves the essential
structure of something. Likewise, an isometry is a map that preserves distances.1

Isometries
Two metric spaces (X, dX) and (Y, dY ) are called isometric if there exists a bijective isometry
between them, i.e., if there exists an invertible function ' : X ! Y such that

dX(x
1

, x
2

) = dY ('(x1

),'(x
2

)).

The function ' is called an isometry.

Ex.

The set of sequences with only zeros and ones,

X = {(x
1

, x
2

, . . .) 2 l1 : for each j, xj = 0 or xj = 1},

endowed with the l1-metric,

d(x, y) = sup
j2N

|xj � yj |

is isometric to X endowed with the discrete metric, because

d(x, y) = 1 unless x = y.

The isometry is the identity operator, ' : x 7! x, (X, k · kl1) ! (X, d
discrete

).

1The word isos is Greek for ’same’, ’similar’; morphe is ’shape’,’form’; and metron is ’measure’.
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Let a < b. The normed spaces BC((0, 1),R) and BC((a, b),R) of bounded continuous
functions on the intervals (0, 1) and (a, b), respectively, are isometric, since

' : BC((0, 1),R) ! BC((a, b),R), f(·) '7! f
⇣ ·� a

b� a

⌘

is an isometry:

dBC((0,1),R)(f, g) = sup
x2(0,1)

|f(x)� g(x)| = sup
x2(a,b)

�

�

�

f
�x� a

b� a

�

� g
�x� a

b� a

�

�

�

�

= dBC((a,b),R)(f, g).

(Note that ' is invertible with inverse '�1 : f(·) 7! f(a+ ·(b� a)). Hence, studying the
metric space BC((a, b),R) is no di↵erent from studying BC((0, 1),R).

Isomorphisms
Vector space isomorphisms

A vector space isomorphism is a bijective linear map between two vector spaces, i.e. an
invertible function T : X ! Y such that

T (x+ y) = Tx+ Ty and T (�x) = �Tx for all x, y 2 X, � 2 R (or C).

Two vector spaces which allow for such a mapping are called isomorphic, and we write

X ⇠= Y
def() 9 isomorphism T : X ! Y.

N.b. A set which is the image of a vector space isomorphism automatically becomes a vector
space (it inherits its linear structure from X).

Ex.

Regarded as a real vector space, the space Cn of complex n-tuples,

z = (z
1

, . . . , zn), z
1

, . . . , zn 2 C

is isomorphic to Euclidean space R2n via the isomorphism1

z = (x
1

+ iy
1

, . . . , xn + iyn) 7! (x, y) = (x
1

, . . . , xn, y1, . . . , yn).

The set of polynomials with real coe�cients of degree at most n, Pn(R), is a
vector space consisting of elements

p(x) = anx
n + an�1

xn�1 + . . .+ a
1

x+ a
0

, a
0

, . . . , an 2 R.

Why is this a vector space? Because Pn(R) ⇠= Rn+1 : The mapping

T : Pn(R) ! Rn+1, anx
n + an�1

xn�1 + . . .+ a
1

x+ a
0

7! (a
0

, a
1

, . . . , an)

is both bijective,

for any (a
0

, . . . , an) 2 Rn+1 there exists a unique p(x) =
n
X

k=0

akx
k 2 Pn(R),

1This is also an isometry, since |z|2 = |x|2 + |y|2.
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and linear,

T

✓

�

n
X

k=0

akx
k + µ

n
X

k=0

bkx
k

◆

= T

✓ n
X

k=0

(�ak + µbk)x
k

◆

= (�a
0

+ µb
0

, . . . ,�an + µbn)

= �(a
0

, . . . , an) + µ(b
0

, . . . , bn)

= �T

✓ n
X

k=0

akx
k

◆

+ µT

✓ n
X

k=0

bkx
k

◆

.

Hence any linear operation in Pn(R) corresponds to a linear operation in Rn+1, meaning
that Pn(R) and Rn+1 are isomorphic as vector spaces.

Isomorphisms on normed spaces

If the vector spaces are normed, they are isomorphic as normed spaces if they are isomor-
phic (as vector spaces) and isometric (as metric spaces). Sometimes this is called isometrically
isomorphic to avoid confusion.

Ex.

The spaces BC((0, 1),R) and BC((a, b),R) are isometrically isomorphic, since the isom-
etry ' in the example above is also a vector space isomorphism:

'(�f + µg)(x) = (�f + µg)
⇣x� a

b� a

⌘

= �f
⇣x� a

b� a

⌘

+ µg
⇣x� a

b� a

⌘

= �'(f)(x) + µ'(g)(x), x 2 (a, b).

Embeddings

If a (normed) vector space X is isomorphic to a subspace M ⇢ Y of another (normed) vector
space, we say that it is (continuously) embedded in Y ,

X ,! Y
def() 9 isomorphism T : X ! M ⇢ Y.

To ease terminology we shall use this concept also for isometries between metric spaces.

Ex.

The vector space of polynomials of degree at most 1, P
1

(R), is continuously embedded
in three-dimensional Euclidean space,

P
1

,! R3, since P
1

⇠= R2 ⇢ R3.

The identity operator provides an embedding of the vector space of continuously di↵er-
entiable functions on an interval I into the vector space of continuous functions on the
same interval:1

C1(I,R) ,! C(I,R).

Dense sets
A subset M ⇢ X of a metric space is dense if its closure is the whole space.

Mdense inX
def() M = X.

In this sense, M is ’almost all of X’.

1Note that, when I = R, or if I is not closed, neither of these spaces are normed. When I = [a, b] is closed and
finite, BC([a, b],R) = (C([a, b],R), k · k1). Otherwise, BC(I,R) is strictly smaller than C(I,R).
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Ex.

Q is dense in R:

for any � 2 R there is a sequence {qn}n ⇢ Q such that qn ! � in R.

Stone-Weierstrass1: Let I = [a, b] be a finite and closed interval. The polynomials,
P (R), the infinitely continuosly di↵erentiable functions, C1(I,R), and the k
times continuously di↵erentiable functions, Ck(I,R), k � 1, are all dense in the space
of bounded and continuous functions BC(I,R):

8 " > 0, f 2 BC(I,R) 9 f
approx

2 P (R) ⇢ C1(I,R) ⇢ Ck(I,R); sup
x2I

|f(x)� f
approx

(x)| < ".

Separability

A metric space is said to be separable if it contains a countable dense set:

X separable
def() 9{xn}n2N ⇢ X; {xn}n = X.

Ex.

Since Q is countable, and Q = R (with respect to the distance d(x, y) = |x � y|), it
follows that (R, | · |) is separable.

Using that Q = R one can show that all the spaces Rn,Cn, lp(R) and lp(C) for 1 
p < 1, BC([a, b],R), and BC([a, b],C) are separable (with respect to their standard
norms/metrics).

Neither l1 nor BC((a, b),R) or BC((a, b),C) is separable. (In this respect, these spaces
are much ’bigger’ than the other spaces considered in this course.)

} Completion theorem
Every metric (normed) space is densely embedded in a complete metric (normed) space.

Ex.

If we complete Q with respect to the metric d(x, y) = |x� y| we get R:

Q dense

,! R.

If we complete C1([0, 1],R) with respect to the supremum norm, k · k1, we get
BC([0, 1],R).

Let I ⇢ R be an open interval, and consider (measurable) functions such that the
integral

Z

I

|f(x)|2 dx exists and is finite.

1There are many versions of this theorem. The classical result states that the set of polynomials are dense in
BC([a, b],C).
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Then

kfkL2(I,R) :=
⇣

Z

I

|f(x)|2 dx
⌘

1/2

defines a norm on these functions, so we have a normed space1. The completion of this
space is called the space of square-integrable functions, written

L
2

(I,R).

The same space can be obtained by completing C(I,R) with respect to the L
2

-norm.
Hence

(C(I,R), k · kL2)
dense

,! L
2

(I,R).

A deep result in analysis is that L
2

(I,R) ⇠= l
2

(R) (isometrically isomorphic): the el-
ements in l

2

(R) may be identified as (generalised) Fourier coe�cients of elements in
L
2

(I,R).

1Two functions in this space are equal if they are equal almost everywhere on I.
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Chapter 2

Linear spaces and transformations

2.1 Linear subspaces

Let X be a vector space. A subset S ⇢ X is a subspace of X if it is closed under linear operations,
i.e.

S ⇢ X subspace of X
def() �x+ µy 2 S whenever x, y 2 S and µ,� 2 R (or C).

In particular, 0 2 S, and S is itself a vector space (the axioms for a vector space follow from those
of X).

Ex.

In any vector space, {0} (the set consisting only of the zero element) is a subspace,
since

�0+ µ0 = 0 2 {0} for all scalars �, µ.

Consider

R = {(x, 0, 0) : x 2 R}

as a subset of

R3 = {(x, y, z) : x, y, z 2 R}.

Then R is a subspace of R3, since it is non-empty and

�(x
1

, 0, 0) + µ(x
2

, 0, 0) = (�x
1

+ µx
2

, 0, 0) 2 R ⇢ R3.

Similarly, the set of real-valued continuous functions on R which vanish on some set
S ⇢ R is a subspace of C(R,R):

{f 2 C(R,R) : f ⌘ 0 on S} is a subspace of C(R,R),

since

µf(x) + �g(x) = 0 if f(x) = 0 and g(x) = 0.
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The vector space of polynomials of degree at most n, Pn(R), endowed with the usual
addition and scalar multiplication, is a subspace of the set of polynomials of degree at
most n+ 1. Indeed,

P
0

(R) ⇢ P
1

(R) ⇢ . . . ⇢ Pn(R) ⇢ Pn+1

(R) ⇢ . . . ⇢ P (R) :=
1
[

n=0

Pn(R)

are all subspaces of each other and, ultimately, of the vector space of all polyno-
mials, P (R). The isomorphisms Pn(R) ⇠= Rn+1 induces a natural representation of
P (R):

P (R) = {(a
0

, a
1

, . . . , an, 0, 0, . . .) : a0, . . . , an 2 R and n 2 N}.

2.2 Linear dependence

Let X be a vector space, and S ⇢ X any subset of X.

Span
A linear combination of vectors u

1

, . . . , un is a finite sum

n
X

j=1

ajuj ,

where a
1

, . . . , an are scalars. The (linear) span of S ⇢ X is the set of all linear combinations of
vectors in S:

span(S)
def.

=
�

X

finite

ajxj : xj 2 S, aj scalars
 

.

For convenience, we define span(;) def.

= {0}. If V = span(S) we say that S generates V .

} The linear span of a set S is the smallest subspace containing S

For any S ⇢ X, span(S) is a subspace of X, and

span(S) =
\

S⇢V

{V : V is a subspace of X}.

Ex.

Let x = (1, 0), y = (2, 0) and z = (1, 1) be vectors in R2. Then

span{x} = span{y} = span{x, y} = {(�, 0) : � 2 R},

span{z} = {(�,�) : � 2 R},

span{x, z} = span{y, z} = span{x, y, z} = R2.

The vectors e
1

= (1, 0, . . .), e
2

= (0, 1, 0, . . .), . . ., en = (0, . . . , 0, 1) generate Rn.

In general, the span of a set di↵ers between real and complex vector spaces:

spanR{1} = R but spanC{1} = C.
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Linear dependence
A family of vectors u

1

, u
2

, . . . is called linearly dependent if one of them is linear combination
of some of the others:

{u
1

, u
2

, . . .} linearly dependent
def()

n
X

j=1

ajuj = 0 for some n 2 N and at least one aj 6= 0.

Else, the family is linearly independent:

{u
1

, u
2

, . . .} linearly independent
def()

⇥

for any n 2 N :
n
X

j=1

ajuj = 0 =) aj = 0 8 j
⇤

.

More generally, a set S is linearly independent if all finite subsets of it are linearly indepen-
dent.

Ex.

The vectors x = (1, 0), y = (2, 0) and z = (1, 1) are linearly dependent in R2, since



2
0

�

= 2



1
0

�

.

But both the sets {x, z} and {y, z} are linearly independent, since

a
1

x+ a
2

z = 0 () a
1



1
0

�

+ a
2



1
1

�

=



0
0

�

()


a
1

+ a
2

a
2

�

=



0
0

�

() a
1

= a
2

= 0,

and similarly for {y, z}.

If 0 2 S, then S is linearly dependent.

{1, x, x2, . . .} is linearly independent in P (R).

{1, cos(x), sin(x), cos(2x), sin(2x), . . .} is linearly independent in C(I,R).

2.3 Bases and dimension

Let X be a vector space.

Hamel Bases
A linearly independent set which generates X is called a (Hamel) basis for X:

S ⇢ X Hamel basis for X
def() span(S) = X and S lin. indep.

Equivalently, S is a Hamel basis for X if every vector x 2 X has a unique and finite representation

x =
X

finite

ajuj , uj 2 S.

We shall consider only ordered Hamel bases, in which case the scalars aj , called coordinates,
are well defined.

Ex.

{e
1

, . . . , en}, with

ej = (0, . . . , 1
|{z}

jth position

, 0 . . .)

is called the standard basis for Rn.
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{1, x, x2, . . .} is an ordered Hamel basis for P (R): every real polynomial can be uniquely
expressed as a finite sum,

p(x) =
X

finite

ajx
j , aj 2 R.

Dimension
If X has a basis consisting of finitely many vectors, X is said to be finite-dimensional. Else, X
is infinite-dimensional.

} The dimension of any finite-dimensional vector space is unique

All bases of a finite-dimensional vector space have the same number of elements. This number is
called the dimension of the space.

Proof

Suppose that {ej}mj=1

and {fj}nj=1

are both bases, and that m > n. Since a basis is linearly
independent, the only solution of

m
X

j=1

ajej = 0 ought to be a
1

, . . . , am = 0.

Since {fj}nj=1

is also a basis, we may represent ej =
Pn

k=1

bj,kfk in a unique way. Then

m
X

j=1

n
X

k=1

ajbj,kfk = 0 meaning that
m
X

j=1

ajbj,k = 0 for k = 1, . . . , n.

This is a linear homogeneous system with n equations and m > n unknowns (the scalars aj).
Such a system always has a non-trivial solution (meaning that some aj 6= 0). Hence {ej}mj=1

is not linearly independent, so it cannot be a basis.

Ex.

Rn has dimension n.

Pn(R), has dimension n+ 1. (Recall that Pn(R) ⇠= Rn+1.)

Cn has dimension n when considered as a complex vector space, but 2n when considered
a real vector space.

The lp-, BC-, and L
2

-spaces are all infinite-dimensional.

} Any finite-dimensional vector space is isomorphic to Euclidean space

Let X be a real vector space with basis {e
1

, . . . , en}. Then X ⇠= Rn.1

Proof

By the definition of a basis, any x 2 X has a unique representation

x =
n
X

j=1

ajej .

1If X is a complex vector space, X ⇠= Cn.
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Let T : X ! Rn be the mapping defined by

Tx = (a
1

, . . . , an).

T is linear: if x =
P

ajej and y =
P

bjej ,

T (�x+ µy) = (�a
1

+ µb
1

, . . . ,�an + µbn) = �(a
1

, . . . , an) + µ(b
1

, . . . , bn) = �Tx+ µTy,

T is surjective:

for any (a
1

, . . . , an) 2 Rn there exists x =
n
X

j=1

ajej ; Tx = (a
1

, . . . , an)

T is injective:

Tx = Ty () 8j : aj = bj =) x = y.

Thus T is a vector space isomorphism.

N.b. In an n-dimensional vector space, m > n vectors are linearly dependent.

2.4 Schauder bases

Whereas the concept of a Hamel basis is very general — it applies to any vector space — it is not
particularly well suited for infinite-dimensional Banach spaces.

} Infinite-dimensional Banach spaces have only uncountable Hamel bases

Let X be an infinite-dimensional Banach space. Then a sequence {ej}j2N cannot be a Hamel basis
for X.

Schauder Bases
Let (X, k · k) be a Banach space. A sequence {ej}j2N is called a Schauder basis (or countable
basis) for X if every vector x 2 X has a unique represention

x =
X

j2N
xjej ,

meaning that limN!1 kx�
PN

j=1

xjejk = 0. The scalars xj are the coordinates of x.

N.b. Any space with a Schauder basis is separable.1

From now on, the word basis refers to an ordered basis, Hamel (in the case of any finite-
dimensional vector space) or Schauder (in the case of any infinite-dimensional Banach space).
In both cases, a basis assigns to each x 2 X unique coordinates x

1

, x
2

, . . ..

Ex.

Let ej = (0, . . . , 1
|{z}

jth position

, 0 . . .). Then {ej}1j=1

is a (Schauder) basis for lp, 1  p < 1:2

Approximation property:

x = {xj}j2N 2 lp =)
1
X

j=1

|xj |p < 1 =)
1
X

N+1

|xj |p ! 0 as N ! 1.

1The opposite is not true; there are (strange) separable Banach spaces with no Schauder basis.
2
l1 has no Schauder basis.
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Thus

�

�

N
X

j=1

xjej � x
�

�

lp
= k(x

1

, . . . , xN , 0, 0, . . .)� (x
1

, . . . , xN , xN+1

, . . .)klp =
�

1
X

N+1

|xj |p
�

1/p ! 0 as N ! 1.

Uniqueness of coordinates:

1
X

j=1

xjej =
1
X

j=1

yjej () lim
N!1

N
X

j=1

|xj � yj |p = 0 =) xj = yj , for all j 2 N.

The trigonometric functions {eikx}k2Z is a (Schauder) basis for L
2

((�⇡,⇡),C). The
coordinates in this basis are known as Fourier coe�cients.

The vectors (1, 0, 0), (1, 1, 0), (1, 1, 1) provide a (Hamel) basis for R3. Find the coordi-
nates [c

1

, c
2

, c
3

] of (2, 0, 1) in this basis.

c
1

2

4

1
0
0

3

5+ c
2

2

4

1
1
0

3

5+ c
3

2

4

1
1
1

3

5 =

2

4

2
0
1

3

5 ()

2

4

c
1

+ c
2

+ c
3

c
2

+ c
3

c
3

3

5 =

2

4

2
0
1

3

5 ()

2

4

c
1

c
2

c
3

3

5 =

2

4

2
�1
1

3

5 .

The coordinates for (2, 0, 1) in the new basis are [2,�1, 1].

2.5 Basis transformations

Change-of-basis matrix
Let e = {e

1

, . . . , en} and f = {f
1

, . . . , fn} be two bases for a finite-dimensional real vector space
X. Pick any element x 2 X. Then

x =
n
X

j=1

xjej

has coordinates (x
1

, . . . , xn)e in the basis e. Since f is also a basis, we may express

ej =
n
X

k=1

ck,j fk, j = 1, . . . , n, and x =
n
X

j=1

xj

n
X

k=1

ck,j fk =
n
X

k=1

✓ n
X

j=1

ck,j xj

| {z }

coord. in f

◆

fk.

Put di↵erently,

2

6

6

6

4

y
1

y
2

...
yn

3

7

7

7

5

=

2

6

6

6

4

c
1,1 c

1,2 . . . c
1,n

c
2,1 c

2,2 . . . c
2,n

...
...

. . .
...

cn,1 cn,2 . . . cn,n

3

7

7

7

5

2

6

6

6

4

x
1

x
2

...
xn

3

7

7

7

5

defines the coordinates (y
1

, . . . , yn) of x in the basis f : xf = Cxe. The n ⇥ n scalar-valued
matrix C 2 Mn⇥n(R) is called a change-of-basis matrix.
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The change-of-basis matrix from e = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} to f = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}
in Rn:

e
1

=
3

X

k=1

ck,1fk ()

2

4

c
1,1

c
2,1

c
3,1

3

5 =

2

4

1
0
0

3

5

e
2

=
3

X

k=1

ck,2fk ()

2

4

c
1,2

c
2,2

c
3,2

3

5 =

2

4

�1
1
0

3

5

e
3

=
3

X

k=1

ck,3fk ()

2

4

c
1,3

c
2,3

c
3,3

3

5 =

2

4

0
�1
1

3

5

. (1)

The change-of-basis matrix is

C =

2

4

1 �1 0
0 1 �1
0 0 1

3

5 .

In particular,

2

4

2
�1
1

3

5 =

2

4

1 �1 0
0 1 �1
0 0 1

3

5

2

4

2
0
1

3

5 yields that (2, 0, 1)e = (2� 1, 1)f .

Change-of-basis matrix as an inverse
If we write (1) in column form, we get:

�

�

�

�

�

�

2

4

.
e
1

.

3

5

2

4

.
e
2

.

3

5

2

4

.
e
3

.

3

5

�

�

�

�

�

�

=

�

�

�

�

�

�

2

4

.
f
1

.

3

5

2

4

.
f
2

.

3

5

2

4

.
f
3

.

3

5

�

�

�

�

�

�

2

4

1 �1 0
0 1 �1
0 0 1

3

5 ()

2

4

1 0 0
0 1 0
0 0 1

3

5 =

2

4

1 1 1
0 1 1
0 0 1

3

5

2

4

1 �1 0
0 1 �1
0 0 1

3

5 .

Thus I = [f ]C and C = [f ]�1, where [f ] is the matrix with the basis vectors f
1

, . . . , fn as column
vectors.

N.b. Matrices of this form—with zeros below the main diagonal—are called upper triangular.
More precisely, (aij)ij is upper triangular if aij = 0 for i > j. Lower triangular matrices are defined
in a similar fashion (aij = 0 for j > i).

} The inverse of a basis matrix is its inverse change-of-basis matrix

Let [f ] = [f
1

, . . . , fn] 2 Mn⇥n(C) denote a matrix with column basis vectors f
1

, . . . , fn 2 Cn

expressed in the standard basis e. Then
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| {z }

[f ]
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yn
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f

expresses (y
1

, . . . , yn)f in the basis e,

and
2

6

4

y
1

...
yn

3

7

5

f

=

�

�

�

�

�

�
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4

.
f
1

.

3

5 . . .
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4

.
fn
.
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�

�

�

�

�

�

�1

| {z }

[f ]�1

2

6

4

x
1

...
xn

3

7

5

e

expresses (x
1

, . . . , xn)e in the basis f.
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} Any basis in a finite-dimensional vector space corresponds to an invertible matrix

Proof

Consider X ⇠= Fn, F 2 {R,C}. We know from linear algebra that:

A 2 Mn⇥n(F) invertible () the columns A
1

, . . . , An of A are lin.ind. () {A
1

, . . . , An} is a basis for Fn.

2.6 Gaussian elimination

Linear systems
Any linear system of equations

a
11

x
1

+ a
12

x
2

+ · · ·+ a
1nxn = b

1

a
21

x
1

+ a
22

x
2

+ · · ·+ a
2nxn = b

2

...
...

...
...

am1

x
1

+ am2

x
2

+ · · ·+ amnxn = bm

where aij , bi 2 C for i = 1, . . . ,m, j = 1, . . . , n, and x
1

, . . . , xn are unknowns, can be written in
matrix form:
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6

6

4

a
11

a
12

· · · a
1n

a
21

a
22

· · · a
2n

...
...

. . .
...

am1

am2

· · · amn

3

7

7

7

5

2

6

6

6

4

x
1

x
2

...
xn

3

7

7

7

5

=

2

6

6

6

4

b
1

b
2

...
bm

3

7

7

7

5

.

Finding solutions (x
1

, . . . , xn of the linear system of equations is then equivalent to the following
question: given a matrix A 2 Mm⇥n(C) and a vector b 2 Cm, is there a vector x 2 Cn such that
Ax = b?1

The answer depends on A and, for some A, also on b.

Ex.


1 0
2 0

� 

x
1

x
2

�

=



1
1

�

()
x
1

= 1

2x
1

= 1
has no solution.



1 0
2 0

� 

x
1

x
2

�

=



1
2

�

()
x
1

= 1

2x
1

= 2
has infinitely many solutions: x

1

= 1, x
2

2

R.


1 1
2 0

� 

x
1

x
2

�

=



b
1

b
2

�

()
x
1

+ x
2

= b
1

2x
1

= b
2

has a unique solution for any b
1

, b
2

:

x
1

= b2
2

, x
2

= b
1

� b2
2

.

Gaussian elimination and the row echelon form of a matrix
A matrix is in row echelon form if i) the left-most non-zero entry of each row (pivot) is strictly
to the right of the left-most non-zero entry of any row above, and ii) all-zero rows are at the
bottom of the matrix:

2

6

6

4

1 · · ·
0 2 · · ·
0 0 0 7 · · ·
0 0 0 0 · · ·

3

7

7

5

1When A and b are real, one looks for x real.

36



} Any linear system can be brought into row echelon form

Proof

If A = 0 is the zero matrix, we are done.

Else, assume for simplicity that a
11

6= 0 (If not rearrange the rows, or relabel the xj ’s, or
both). To each row (ai1, . . . , ain) below the first, add � ai1

a11
⇥ the first row:

a
11

x
1

+ a
12

x
2

+ · · · a
1nxn = b

1

� ai1
a
11

ai1x1

+ ai2x2

+ · · · ainxn = b
2

0 +

✓

ai2 �
ai1
a
11

a
12

◆

x
2

+ · · ·
✓

ain � ai1
a
11

a
1n

◆

xn = b
2

� ai1
a
11

b
1

Then ai1 = 0 for all i = 2, . . . ,m.

Now, either aij = 0 for all i, j � 2, or we can restart this procedure (looking at the matrix for
indices i, j � 2). Since there are finitely many rows this procedure must eventually terminate,
yielding a matrix Ã = (ãij)ij in row echelon form.

This algorithm is called Gaussian elimination.

A neat trick is the following: write Ax = b as Ax = Ib:
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4

a
11

a
12

· · · a
1n

a
21

a
22

· · · a
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...
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. . .
...

am1
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· · · amn

3
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2

6

6

6

4

x
1

x
2

...
xn

3

7

7

7

5

=

2

6

6

6

4

1 0 · · · 0
0 1 · · · 0
... 0

. . . . . .
0 · · · 1

3

7

7

7

5

2

6

6

6

4

b
1

b
2

...
bm

3

7

7

7

5

, I 2 Mm⇥m.

Gaussian elimination a↵ects only the matrices A and I, not the vectors x and b. We therefore
introduce the m⇥ (n+m) augmented matrix

2

6

6

6

4

a
11

a
12

· · · a
1n 1 0 · · · 0

a
21

a
22

· · · a
2n 0 1 · · · 0

...
...

. . .
...

... 0
. . . . . .

am1

am2

· · · amn 0 · · · 1

3

7

7

7

5

.

The linear operations applied to A in Gaussian elimination are ’stored’ in the augmented ma-
trix.

Ex.

Solve
2

4

1 3 1
2 2 0
2 2 �1

3

5

| {z }
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x
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x
2

x
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1
4
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1 3 1
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x
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x
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x
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4

1 0 0
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0 0 1
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1
4
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5 .

Now, performing the same row operations on the whole augmented matrix,

2

4

1 3 1 1 0 0
2 2 0 0 1 0
2 2 �1 0 0 1

3

5 ()

2

4

1 3 1 1 0 0
0 �4 �2 �2 1 0
0 �4 �3 �2 0 1

3

5 ()

2

4

1 3 1 1 0 0
0 �4 �2 �2 1 0
0 0 �1 0 �1 1

3

5 ,
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we find the row echelon form
2

4

1 3 1
0 �4 �2
0 0 �1

3

5

| {z }

U : upper triangular

2

4

x
1

x
2

x
3

3

5 =

2

4

1 0 0
�2 1 0
0 �1 1

3

5

| {z }

˜L: lower triangular

2

4

1
4
2

3

5 .

Note that L̃ describes the (linear) transformation applied to A to obtain U : we have L̃A = U .

LU-decompositions

As we shall see, if L̃A = U , and if the inverse matrix L̃�1 exists, bringing L̃ into row echelon row
form yields L̃�1. Define L := L̃�1. Then

L̃A = U () LL̃A = LU () A = LU.

This is the LU-decomposition of the matrix A (it does not always exist).1

N.b. If the rows of A are not in correct order (for example, if a
11

= 0), they can be rearranged
by applying a permutation matrix P 2:

2

4

0 1 0
0 0 1
1 0 0

3

5

2

4

row 1
row 2
row 3

3

5 =

2

4

row 2
row 3
row 1

3

5 .

This is known as an LUP-factorization: PA = LU . For square matrices, an LUP-factorization
always exists (but it is not necessarily unique).

Ex.

Gaussian elimination for L̃ yields

2

4

1 0 0 1 0 0
�2 1 0 0 1 0
0 �1 1 0 0 1

3

5 ()

2

4

1 0 0 1 0 0
0 1 0 2 1 0
0 �1 1 0 0 1

3

5 ()

2

4

1 0 0 1 0 0
0 1 0 2 1 0
0 0 1 2 1 1

3

5 ,

meaning that
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4

1 0 0
2 1 0
2 1 1

3

5

| {z }

L=

˜L�1

2

4

1 0 0
�2 1 0
0 �1 1

3

5

| {z }

˜L

=

2

4

1 0 0
0 1 0
0 0 1

3

5 .

Hence, the LU-factorization of A is
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4

1 3 1
2 2 0
2 2 �1

3

5 =

2

4

1 0 0
2 1 0
2 1 1

3

5

2

4

1 3 1
0 �4 �2
0 0 �1

3

5 .

Gauss-Jordan elimination

Let L̃A = U . The algorithm that applies Gaussian elimination (backwards) to the matrix U is
called Gauss-Jordan elimination. It places zeros below and above each pivot; this is called the
reduced row echelon form of the matrix A. If A�1 exists, Gauss–Jordan elimination finds it.

1When it exists, it is unique if one requires the diagonal elements of L to be all ones.
2A permutation matrix has (a permutation of) the standard basis {ej}j as rows.
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Above, L̃�1 gave us A = L̃�1U (the LU-factorization of A).

In the following, U�1 gives us U�1L̃A = I, so that U�1L̃ = U�1L�1 = A�1 (the inverse of
A).

Ex.

Still solving
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0 1 0
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5 .

Gauss:
2

4

1 3 1 1 0 0
0 �4 �2 �2 1 0
0 0 �1 0 �1 1

3

5 .

Gauss–Jordan1:
2

4

1 3 1 1 0 0
0 �4 �2 �2 1 0
0 0 �1 0 �1 1

3

5 ,

2

4

1 3 0 1 �1 1
0 �4 0 �2 3 �2
0 0 �1 0 �1 1

3

5 ,

2

4

1 0 0 � 1

2

5

4

� 1

2

0 �4 0 �2 3 �2
0 0 �1 0 �1 1

3

5

Dividing each row with its pivot gives us the inverse of A:
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1 0 0 � 1
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4

� 1

2

0 1 0 1

2

� 3
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1

2

0 0 1 0 1 �1
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5 ,

meaning that

A�1 = U�1L̃ =

2

4

� 1

2

5

4

� 1

2

1

2

� 3

4

1

2

0 1 �1

3

5

is the linear transformation that brings A into the unit matrix. The solution to the original
problem is

x = A�1b for any b 2 R3.

N.b. The product of the final pivots in the Gauss–Jordan elimination (the diagonal elements
(1)(�4)(�1) = 4 in the example above) is the determinant of A. It is zero exactly if the
Gauss(–Jordan) elimination produces a zero row. In this case the equation Ax = b either has
no, or infinitely many, solutions (depending on b).

2.7 Linear transformations

Let X and Y be vector spaces (both real, or both complex), and T : X ! Y a mapping between
them.

1If we start here with I to the right in the augmented matrix, we obtain U

�1 instead of A�1.
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Linear transformations
We say that T is a linear transformation (or just linear) if it preserves the linear structure of
a vector space:

T linear
def() T (�x+ µy) = �Tx+ µTy, x, y 2 X, µ,� 2 R (or C).

Ex.

Any matrix A 2 Mm⇥n(R) defines a linear transformation Rn ! Rm:
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xn

3

7

7

7

5

| {z }

x

7!
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a
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a
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a
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a
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· · · a
2n

...
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. . .
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· · · amn
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x
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7

7
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| {z }

Ax

The integral operator defined by Tf(t) :=
R t

0

f(s) ds is a linear transformation on
C(I,R):

T : C(I,R) ! C(I,R), T f =



t 7!
Z t

0

f(s) ds

�

.

A slight modification,

Tf :=

Z

1

0

f(s) ds,

yields a linear transformation C(I,R) ! R (given that [0, 1] ⇢ I).1

For any polynomial p 2 Pk(R), the di↵erential operator p(D) :=
Pk

j=0

ajD
j is a linear

transformation:

p(D) : Ck(I,R) ! C(I,R), p(D)f =
k
X

j=0

ajf
(j).

Here, D = d
dx is the standard di↵erentiation operator.

The shift operator T : (x
1

, x
2

, . . .) 7! (0, x
1

, x
2

, . . .), is a linear transformation lp ! lp,
for any p, 1  p  1:

T (�x+ µy) = (0,�x
1

+ µy
1

, . . .) = �(0, x
1

, . . .) + µ(0, y
1

, . . .) = �Tx+ µTy.

Note that kTxklp = kxklp guarantees that ran(T ) ⇢ lp.

The set of linear transformations as a vector space
The set of linear transformations X ! Y is denoted by L(X,Y ):

L(X,Y )
def.

= {T : X ! Y linear}

IF X = Y , we may abbreviate L(X,X) by L(X).

} L(X,Y) is a vector space

If, for all S, T 2 L(X,Y ), we define

(T + S)(x) := Tx+ Sx and (�T )x := �(Tx),

1Such an operator is called a linear functional.
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for all x 2 X and � 2 R (or C), it is easily checked that L(X,Y ) becomes a vector space. In
particular, µT + �S 2 L(X,Y ) for any S, T 2 L(X,Y ).

Ex.

The set of m ⇥ n-matrices Mm⇥n(R) forms a real vector space. As we shall see,
Mm⇥n(R) ⇠= L(Rn,Rm).

} A linear transformation is determined by its action on any basis

Let X be a finite-dimensional1 vector space with basis {e
1

, . . . , en}. For any values y
1

, . . . , yn 2 Y
there exists exactly one linear transformation T 2 L(X,Y ) such that

Tej = yj , j = 1, . . . , n.

Proof

Any x 2 X has a unique representation x =
Pn

j=1

xjej . Define T through

Tx =
n
X

j=1

xjyj .

Then Tej = yj , and T is linear since it acts as multiplication with a 1 ⇥ n matrix (a dot
product with the vector (y

1

, . . . , yn)). Moreover, if S 2 L(X,Y ) also satisfies Sej = yj , then

Sx = S
�

n
X

j=1

xjej
�

=
n
X

j=1

xjSej =
n
X

j=1

xjyj = Tx, for all x 2 X,

so that S = T in L(X,Y ).

Ex.

The columns Aj of an m ⇥ n-matrix A are determined by its action on the standard
basis {ej}nj=1

:

Aej = Aj , j = 1, . . . , n.

Here Aj plays the role of yj in the above theorem.

} Linear transformations between finite-dimensional vector spaces correspond to ma-
trices

Let X,Y be real vector spaces of dimension n and m, respectively. Then L(X,Y ) ⇠= Mm⇥n(R).

N.b. The corresponding statement holds for complex vector spaces X,Y , with Mm⇥n(C) also
complex-valued.

1For infinite-dimensional Banach spaces one needs the additional concept of boundedness (continuity) of a
linear transformation to state a similar result, which then says that the transformation is determined by Tej (but
we cannot choose Tej = yj arbitrarily).
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Proof

Since X ⇠= Rn and Y ⇠= Rm it su�ces to prove the statement for these choices of X and Y .
Let {ej}nj=1

be the standard basis for Rn. Then

T :
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x
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x
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...
xn
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7

7

7

5
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a
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a
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· · · a
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a
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a
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· · · a
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...
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· · · amn
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x
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x
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xn
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7

7

7

5

is a linear transformation Rn ! Rm satisfying

Tej =

2

6

6

6

4

a
1j

a
2j

...
amj

3

7

7

7

5

.

According to the above proposition, there is exactly one such T 2 L(Rn,Rm). Since we can
choose the columns of A = (aij)ij to be any elements in Rm, we get all possible T 2 L(Rn,Rm)
in this way.

Ex.

The linear transformation T : (x
1

, x
2

) 7! (�x
2

, x
1

) on R2 is realized by a rotation matrix
A:



0 �1
1 0

� 

x
1

x
2

�

=



�x
2

x
1

�

.

More generally,



cos(✓) � sin(✓)
sin(✓) cos(✓)

�

rotates a vector ✓ radians counterclockwise; the preceeding example is attained for
✓ = ⇡/2. Any such matrix also corresponds to a change of basis1: if f

1

= (cos(✓), sin(✓))
and f

2

= (� sin(✓), cos(✓)), then



cos(✓) � sin(✓)
sin(✓) cos(✓)

� 

x
1

x
2

�

expresses the coordinates (x
1

, x
2

)f in the standard basis e as x
1

f
1

+ x
2

f
2

.

The di↵erential operator d
dx is a linear operator on P

2

(R). Since P
2

(R) ⇠= R3 via the
vector space isomorphism

2

X

j=0

ajx
j '7! (a

0

, a
1

, a
2

),

we see that

d

dx
:

2

4

0 1 0
0 0 2
0 0 0

3

5

2

4

a
0

a
1

a
2

3

5 =

2

4

a
1

2a
2

0

3

5

1The determinant of the matrix is 1, so it is invertible, regardless of the value of ✓.
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expresses the derivation

d

dx

�

a
0

+ a
1

x+ a
2

x2

�

= a
1

+ 2a
2

x+ 0x2

using a matrix.1

Digression: representing linear transformations in di↵erent bases

Let e = {e
1

, . . . , en} (standard basis) and f = {f
1

, . . . , fn} (new basis) be two bases for Rn, and
[f ] the matrix with [fj ], j = 1, . . . , n, as column vectors (expressed in the standard basis e). Then

xe = [f ]xf and xf = [f ]�1xe.

Hence, if

T 2 L(Rn) : T is realised by Ae 2 Mn⇥n(R) in the basis e,

what is its realisation Af in the basis f? We have

ye = Aexe () yf = [f ]�1ye = [f ]�1Aexe = [f ]�1Ae[f ]xf .

Thus

Af = [f ]�1Ae[f ]

is the realisation of T in the basis f .

Ex.

How do we express the rotation



x
1

x
2

�

e

7!


0 �1
1 0

� 

x
1

x
2

�

e

=



�x
2

x
1

�

e

in the basis f = {(1, 1), (�1, 0)}? Since

[f ] =



1 �1
1 0

�

and [f ]�1 =



0 1
�1 1

�

,

we have

Af =



0 1
�1 1

�

| {z }

[f ]�1



0 �1
1 0

�

| {z }

Ae



1 �1
1 0

�

| {z }

[f ]

=



1 �1
2 �1

�

.

Check: (x
1

, x
2

)e
[f ]�1

7! (x
2

, x
2

�x
1

)f
Af7! (x

1

, x
1

+x
2

)f
[f ]7! (�x

2

, x
1

)e describes the correct
transformation.

Kernels and ranks
Let T 2 L(X,Y ). The set of vectors for which T vanishes is called the kernel of T.

ker(T )
def.

= {x 2 X : Tx = 0 in Y }.
1Note that this matrix is nilpotent, meaning that An = 0 for some n 2 N (in this case n = 3). This is because

three derivations on any p 2 P2(R) produces the zero polynomial.
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} The kernel and range of a linear transformation are vector spaces

Let T 2 L(X,Y ). Then ker(T ) ⇢ X is a linear subspace of X, and ran(T ) ⇢ Y is a linear subspace
of Y .

N.b. The dimension of ran(T ) is called the rank of T , rank(T ).

Proof

For the kernel of T : If x
1

, x
2

2 ker(T ), then

T (�x
1

+ µx
2

) = �Tx
1

+ µTx
2

= �0+ µ0 = 0.

This shows that ker(T ) is a subspace of X. (Note, in particular, that the zero element of X
is always in ker(T ).)

For the range of T : If y
1

, y
2

2 ran(T ), then there exists x
1

, x
2

2 X such that

Tx
1

= y
1

, Tx
2

= y
2

.

We want to show that, for any scalars �, µ, we have �y
1

+ µy
2

2 ran(T ). But this follows
from that

�y
1

+ µy
2

= �Tx
1

+ µTx
2

= T (�x
1

+ µx
2

) 2 ran(T ),

where we have used that µx
1

+ �x
2

2 X, by the properties of a vector space.

Ex.

The kernel of T 2 L(R2) : (x
1

, x
2

) 7! (�x
2

, x
1

) is the trivial subspace {(0, 0)} ⇢ R2.
Since ran(T ) = R2, we have rank(T ) = 2.

The di↵erential operator d
dx is a linear operator C1(R) ! C(R)1. As we know,

ker
� d

dx

�

= {f 2 C1(R) : f(x) ⌘ c for some c 2 R},

so that ker( d
dx )

⇠= R is a one-dimensional subspace of C1(R). Since

d

dx

Z x

0

f(t) dt = f(x) for any f 2 C(R),

we have ran( d
dx ) = C(R) and rank( d

dx ) = 1.

The domain of definition matters : considered as an operator on Pn(R) the di↵erential
operator d

dx : Pn(R) ! Pn(R) still has a one-dimensional kernel (the space of constant
polynomials, P

0

(R)), but its range is now finite-dimensional:

ran
� d

dx

�

= Pn�1

(R) ⇠= Rn.

This even works for n = 0, if we define P�1

(R) := R0 = {0}.2

} A linear transformation is injective if and only if its kernel is trivial

Let T 2 L(X,Y ). Then

T injective () ker(T ) = {0}.
1Here we use the convention that C

k(R) = C

k(R,R), just as one may write L(X) = L(X,X) for linear
transformations on a space X.

2This is the reason why the degree of the zero polynomial is sometimes taken as �1; if deg(0) = �1, then
P�1(R) is naturally definied, and the di↵erential operator maps Pn(R) ! Pn�1(R) for all n � 0.
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Proof

T injective ()
⇥

Tx = Ty =) x = y
⇤

()
⇥

T (x� y) = 0 =) x� y = 0
⇤

()
⇥

Tz = 0 =) z = 0
⇤

() ker(T ) = {0}.

Ex.

A matrix A 2 Mm⇥n(R) describes a linear transformation Rn ! Rm. This transforma-
tion is injective if zero (the zero element in Rn) is the only solution of the corresponding
linear homogeneous system:

a
11

x
1

+ . . .a
1nxn = 0

...
...

am1

x
1

+ . . .amnxn = 0 =) (x
1

, . . . , xn) = (0, . . . , 0).

Matrices: null spaces, column spaces and row spaces
Let A = (aij)ij 2 Mm⇥n(R) be the matrix realisation of a linear map Rn ! Rm.1

The null space of a matrix

In this case the kernel of A is also called the null space of A:

x 2 ker(A) () Ax = 0 ()
n
X

j=1

aijxj = 0 8i = 1, . . . ,m

() (x
1

, . . . , xn) ? (ai1, . . . , ain) for all i = 1, . . . , n.

Thus, the kernel is the space of vectors x 2 Rn which are orthogonal to the row vectors of A.

The column space of a matrix

The column space of A is the range of A: since

Ax =

2

6

4

a
11

· · · a
1n

...
. . .

...
am1

· · · amn

3

7

5

2

6

4

x
1

...
xn

3

7

5

= x
1

2

6

4

a
11

...
am1

3

7

5

+ x
2

2

6

4

a
12

...
am2

3

7

5

+ . . .+ xn

2

6

4

a
1n

...
amn

3

7

5

,

we have that

ran(A) = {Ax : x 2 Rn} =
n

n
X

j=1

xjAj : (x1

, . . . , xn) 2 Rn
o

= span{A
1

, . . . , An}

is the subspace of Rm spanned by the column vectors Aj , j = 1, . . . , n, of A.

The row space of a matrix

Similarly, define the row space of A to be the space spanned by the row vectors of A. Then

row space of A = column space of At,

where At = (aji) is the transpose of A = (aij).

1This realisation is unique as long we have agreed upon a choice of bases for Rn and Rm. If nothing else is
said, we assume that vectors in Rn, n 2 N, are expressed in the standard basis.

45



} The kernel of a matrix is perpendicular to the range of its transpose

Let A 2 Mm⇥n(R). Then

ker(A) ? ran(At),

meaning that if x 2 ker(A) and y 2 ran(At), then x · y =
Pn

j=1

xjyj = 0.

Proof

As shown above, the null space of A is perpendicular to the row space of A. The row space
of A equals the column space of At (this is the definition of the matrix transpose). The
proposition follows.

The rank–nullity theorem and its consequences
} The rank–nullity theorem

Let T 2 L(Rn,Rm). Then

dimker(T ) + dim ran(T ) = n.

N.b. The name comes from that dimker(T ) is the nullity of T . Thus, the sum of the rank and
the nullity of T equals the dimension of its ground space (domain).

Proof

Pick a basis e = {e
1

, . . . , ek} for ker(T ). If k = n and ker(T ) = Rn we are done, since then

ran(T ) = {Tx : x 2 Rn} = {0},

so that dimker(T ) + dim ran(T ) = n.

Hence, assume that k < n and extend e to a basis {e
1

, . . . , ek, f1, . . . , fm} for Rn.

This can be done in the following way: pick f
1

62 span{e
1

, . . . , ek}. Then {e
1

, . . . , en, f1} is lin-
early independent. If span{e

1

, . . . , ek, f1} = Rn we stop. Else, pick f
2

62 span{e
1

, . . . , ek, f1}.
Since l > n vectors are always linearly dependent in Rn, this process stops when k +m = n
(it cannot stop before, since then Rn would be spanned by a set of dimension < n, which is
impossible; see the definition of vector space dimension).

We now prove that Tf = {Tf
1

, . . . T fm} is a basis for ran(T ).

Tf is linearly independent:

m
X

j=1

ajTfj = 0 () T
�

m
X

j=1

ajfj
�

= 0 ()
m
X

j=1

ajfj 2 ker(T ) () aj = 0 8j = 1, . . . ,m,

since T is linear, and since, by the construction of f , no non-zero linear combination of
elements fj is in ker(T ).

Furthermore, Tf spans ran(T ):

ran(T) = {Tx : x 2 Rn} =
n

T
�

k
X

j=1

ajej +
m
X

j=1

bjfj
�

: aj , bj 2 R
o

=
n

T
�

k
X

j=1

ajej
�

+ T
�

m
X

j=1

bjfj
�

: aj , bj 2 R
o

=
n

m
X

j=1

bjTfj : bj 2 R
o

,

since T is linear and e ⇢ ker(T ).
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Hence, {Tf
1

, . . . , T fm} is a basis for ran(T ), and

dimker(T ) + dim ran(T ) = k +m = n.

} For finite-dimensional linear transformations, injective means surjective

Let T 2 L(Rn) be a linear transformation Rn ! Rn. Then the following are equivalent:

T is injective (ker(T ) = {0})

T is surjective (ran(T ) = Rn)

T : Rn ! Rn is invertible

The matrix representation A of T (in any given basis) is invertible.

For any b 2 Rn the system Ax = b has a unique solution x.

Proof

(i) () (ii): When m = n, the rank–nullity theorem says that ran(T ) = Rn (so that T is
surjective) exactly when ker(T ) = {0} (so that T is injective).

(i,ii) () (iii): A function is bijective exactly if it is both invertible and surjective.

(iii) () (iv): Given any basis for Rn, T has a unique matrix representation A (defined
by its action on the basis vectors). If the inverse matrix A�1 exists, then there exists a
corresponding linear transformation S such that ST = ST = id (since A�1A = AA�1 = I,
and the identity map id: Rn ! Rn has the identity matrix I as representation in all bases).
Thus S = T�1 is the inverse of T . If, on the other hand, T�1 exists, it must by the same
argument have a matrix representation B such that AB = BA = I. Hence, A�1 = B exists.

(iv) () (v): If A is invertible it is immediate that x = A�1b is the unique solution. If,
on the other hand, Ax = b, has a unique solution x for any b, we construct a matrix B by
taking as its columns xj such that Axj = ej , where {e

1

, . . . , en} is the standard basis. This
guarantees that B = A�1 is the inverse matrix of A. (A less constructive argument would be
to note that Ax = b is uniquely solvable for all b 2 Rn exactly if T is invertible.)

Geometric interpretation of the rank–nullity theorem

Define the direct sum X � Y of two vector spaces (both real, or both complex) as the space of
pairs (x, y) with the naturally induced vector addition and scalar multiplication:

X � Y
def.

= {(x, y) 2 X ⇥ Y },

where

(x
1

, y
1

) + (x
2

, y
2

)
def.

= (x
1

+ x
2

, y
1

+ y
2

) and �(x, y)
def.

= (�x,�y).

If X,Y ⇢ V are subspaces of a vector space V , then

X � Y = V () X \ Y = {0} and X + Y
def.

= {x+ y : x 2 X, y 2 Y } = V,

where the equality X � Y = V should be interpreted in terms of isomorphisms (V can be repre-
sented as X � Y ). Note that

dim(X � Y ) = dim(X) + dim(Y ).

With these definitions, the rank–nullity theorem can be expressed as a geometric description of
the underlying space (Rn) in terms of the matrix A.
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} Rank–nullity theorem: geometric version

Let A 2 Mm⇥n(R). Then

Rn = ker(A)� ran(At).

N.b. A consequence of this is that rank(A) = rank(At); another is that Rm = ker(At) �
ran(A).

Proof

We have already showed that ker(A) ? ran(At) in Rn, so that

ker(A) \ ran(At) = {0};

this is a consequence of that |x|2 = x · x = 0 for any x 2 ker(A) \ ran(At).

It remains to show that ker(A)� ran(At) make up of all Rn. Since ker(A) ? ran(At) in Rn,
we have

rank(At)  n� dim(ker(A) = rank(A),

where the last equality follows is the rank–nullity theorem. But this argument is not depen-
dent on A; hence

rank(A) = rank((At)t)  rank(At),

and

rank(A) = rank(At).

This shows that

ker(A)� ran(At) = Rn

constitute all of Rn.

} Summary on linear equations (the Fredholm alternative)

Let A 2 Mm⇥n(R) be the realisation of a linear transformation Rn ! Rm, and consider the linear
equation

Ax = b.

Either b 2 ran(A) and the equation is solvable, or b 2 ker(At) and there is no solution.

In case ker(A) = {0} any solution is unique, else the solutions can be described as

xp + ker(A),

where xp is any (particular) solution of Ax = b.

Proof

The first statement is a reformulation of the geometric version of the rank–nullity theorem;
the second follows from that

(

Ax = b

Ay = b
()

(

Ax = b

A(x� y) = 0
()

(

Ax = b

y = x+ z, z 2 ker(A).
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If ker(A) = {0} there is at most one solution, x, else the solution space is an a�ne space1 of
the same dimension as ker(A).

2.8 Bounded linear transformations

Let X and Y be normed spaces (both real, or both complex), and T 2 L(X,Y ) a linear mapping
between them.

Boundedness
A linear mapping T : X ! Y is called bounded, T 2 B(X,Y ), if T maps bounded sets into
bounded sets:

T 2 B(X,Y )
def() 9C; kTxkY  CkxkX for all x 2 X.

Thus, if T is bounded, the number

kTk def.

= sup
x 6=0

kTxkY
kxkX

is finite; it is the (operator) norm of T .

N.b. In some sources B(X,Y ) is denoted by L(X,Y ); to us, L(X,Y ) is the space of linear
transformations between two (not necessarily normed) vector spaces; if X and Y are normed
spaces, then B(X,Y ) ⇢ L(X,Y ).

From now on, we will not always write out the indices for the norms; just recall that x 2 X and
Lx 2 Y .

Ex.

The integral
R t

0

f(s) ds defines a linear transformation on the space of bounded and
continuous functions f : [0, 1] ! R,

T : BC([0, 1],R) ! BC([0, 1],R), (Tf)(t) =

Z t

0

f(s) ds.

This transformation is bounded, since

kTfkBC([0,1],R) = sup
t2[0,1]

�

�

�

Z t

0

f(s) ds
�

�

�


Z

1

0

max
s2[0,1]

|f(s)| ds = kfkBC([0,1],R),

so that kTk  1. In fact, kTk = 1 (can you see why?).

If g 2 BC([0, 1],R), a similar argument yields that

T : BC([0, 1],R) ! BC([0, 1],R), (Tf)(t) =

Z t

0

f(s)g(s) ds

is bounded too, with kTk  maxt2[0,1] |g(t)| = kgkBC([0,1],R) (see if you can make this
better).

1An a�ne space is a ’translation’ of a vector space (or a vector space which has lost its origin); a�ne spaces
are not themselves vector spaces, since they do not have any zero element.
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By the same argument, with t = 1 and g 2 BC([0, 1],R), the definite integral
R

1

0

f(s)g(s) ds
defines a bounded linear functional1

T : BC([0, 1],R) ! R, f 7!
Z

1

0

f(s)g(s) ds.

Remember the form of this functional – it is the inner product for the Hilbert space
L
2

((0, 1),R).

The derivative d
dx is in general not a bounded operator.2 To see why, consider a sequence

of functions like

fn(x) := sin(nx).

These functions are uniformly bounded, but not their derivatives. This indicates that,
to solve di↵erential equations, it is better to reformulate them as integral operators.

Equivalence of norm expressions

For T 2 B(X,Y ),

kTk = sup
x 6=0

kTxk
kxk = sup

kxk=1

kTxk = sup
kxk1

kTxk

all describe the least possible bound on C such that kTxk  Ckxk for all x 2 X.

Proof

Since T is linear, and since norms are positively homogeneous, we get

kTxk
kxk =

�

�

�

1

kxkTx
�

�

�

=
�

�

�

T
� x

kxk
�

�

�

�

, x 6= 0.

Note that the mapping S� ! S
1

, x 7! x
kxk , is bijective. Thus, if � > 0, we have

sup
kxk=�

kTxk = � sup
kxk=1

kTxk.

By considering all fixed, but di↵erent, � > 0, we see that

sup
kxk=�>0

kTxk
kxk = sup

kxk=1

kTxk, so that sup
x 6=0

kTxk
kxk = sup

kxk=1

kTxk.

Then, consider �  1 to see that

sup
kxk1

kTxk
�1

 sup
kxk=1

kTxk  sup
kxk1

kTxk,

where the last inequality follows from the definition of the supremum. This proves the
assertion.

} B(X,Y) is a normed space

B(X,Y ) = {T 2 L(X,Y ) : T is bounded}

is a normed space when equipped with the operator norm k · k.
1A functional is a function from a vector space to its field of scalars (R or C).
2Unless we consider it on some special space of functions, as the finite-dimensional space of real polynomials of

degree less than n.
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Proof

We already know that L(X,Y ) is a linear space, so it remains to show that B(X,Y ) is a
subspace and k · k a norm on B(X,Y ).

Subspace property. take T, S 2 B(X,Y ) and µ,� scalars. Then

sup
kxk1

k(µT + �S)(x)kY  sup
kxk1

(|µ|kTxkY + |�|kSxkY )

 |µ| sup
kxk1

kTxkY + |�| sup
kxk1

kSxkY = |µ|kTk+ |�|kSk

is finite by choice of S, T . Thus µT +�S is bounded if T and S are bounded, so that B(X,Y )
is a subspace of L(X,Y ).

Norm properties. These are consequences of that the operator norm k · k is defined using
(primarily) the norm of Y .

Positive definiteness:

kTk = 0 () kTxkY = 0 8x 2 X () T ⌘ 0 in L(X,Y ).

Positive homogeneity:

k�Tk = sup
kxkX1

k�TxkY = |�| sup
kxkX1

kTxkY = |�|kTk.

Triangle inequality:

kT + Sk = sup
kxkX1

k(T + S)xkY  sup
kxkX1

�

kTxkY + kSxkY
�

 sup
kxkX1

kTxkY + sup
kxkX1

kSxkY = kTk+ kSk.

Ex.

As we shall see, B(Rn,Rm) = L(Rn,Rm) (as sets and linear spaces): given bases
for Rn,Rm there is a bijective correspondence between matrices A 2 Mm⇥n(R) and
bounded linear transformations T 2 B(Rn,Rm).

Let X be a real normed space. The space X 0 := B(X,R) is called the dual of X;
its elements are bounded linear functionals on X. If X is complex, B(X,C) is its
dual.1

The dual of R is R: each bounded linear functional T 2 B(R,R) is realized by multi-
plication with a real constant:

T 2 B(R,R) () Tx = �x, � 2 R.

Riesz representation theorem: Let L
2

(I,R) be the space of real-valued square-
integrable functions on an open interval I ⇢ R, with norm

kfkL2(I,R) =
�

Z

I

|f(t)|2 dt
�

1/2
.

The Riesz representation theorem asserts that each bounded linear functional T on
L
2

(I,R) can be identified with an element g 2 L
2

(I,R), via

Tf =

Z

I

f(t)g(t) dt.
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Thus L
2

(I,R) ⇠= B(L
2

(I,R),R) is its own dual.2

} B(X,Y) is Banach for Y Banach

If Y is complete, so is B(X,Y ).

N.b. Note that X has no role in the completeness of B(X,Y ).3

Proof

Pointwise convergence. Let {Tn}n2N be a Cauchy sequence in B(X,Y ). Then, for each
fixed x 2 X,

k(Tn � Tm)xkY  kTm � TnkkxkX
m,n!1! 0,

so that {Tnx}n2N is Cauchy in Y . By assumption, Y is complete, so {Tnx}n2N is convergent.
Define

Tx := lim
n!1

Tnx, x 2 X.

The pointwise limit defines a linear and bounded transformation. With this con-
struction T : X ! Y is linear,

T (�x+ µy) = lim
n!1

Tn(�x+ µy) = lim
n!1

(�Tnx+ µTny) = � lim
n!1

Tnx+ µ lim
n!1

Tny = �Tx+ µTy,

and for each fixed x 2 X there exists n" (depending also on x), such that, for all n � n",

kTxkY  k(T � Tn)xkY + kTnxkY  "+ kTnxkY
 "+ sup

n2N
kTnk

| {z }

finite

kxkX ,

where we have used that Cauchy sequences are bounded (so that kTnk is bounded, uniformly
for n 2 N). By taking the supremum over all x with kxkX = 1, we obtain that T is bounded.

Convergence in B(X,Y ). It remains to show that Tn ! T in B(X,Y ). Similarly to the
above argument, if m � n"/2 (depending also on x), we have

k(T � Tn)xkY  k(T � Tm)xkY + k(Tm � Tn)xkY  "
2

+ k(Tm � Tn)xkY
< "

2

+ kTm � TnkkxkX .

Since {Tn}n2N is Cauchy, there exists N"/2 such that

kTn � Tmk <
"

2
for m,n � N"/2.

Choose n � N"/2 and, for each x, an appropriate m � max{n"/2, N"/2} By taking the
supremum over all x with kxkX = 1 we thus find

kT � Tnk < " for n � N"/2.

Hence, limn!1 Tn = T in B(X,Y ).

1This notion of dual coincides with that of a continuous dual; it is possible to define more general duals.
2So far, this identification is in terms of linear spaces, but we will see later that it extends to inner products

(and therefore to norms).
3If, however, X is non-trivial, i.e., if X 6= {0}, then the converse also holds, so that B(X,Y ) is complete if and

only if Y is complete.
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Boundedness and continuity
Continuity

A mapping f : X ! Y between to metric spaces is said to be continuous at x
0

if

f(xn) ! f(x
0

) in Y as xn ! x
0

in X.

Since continuous and sequential limits agree, this is the same as

8 " > 0 9 � > 0; dY (f(x), f(x0

)) < " for dX(x, x
0

) < �.

A mapping that is continuous at all points in X is called continuous.

Ex.

In a normed space, (X, k · k), the norm is a continuous function X ! R: if xn ! x
0

in
X, then

dR(kxnk, kx0

k) =
�

�kxnk � kx
0

k
�

�  kxn � x
0

k = dX(xn, x0

) ! 0,

by the reverse triangle inequality.

} For linear operators, continuity means boundedness

Let T 2 L(X,Y ). Then the following statements are equivalent:

T is everywhere continuous.

T is continuous at x = 0.

T is bounded.

Proof

First, note that for any fixed x
0

2 X,

Txn ! Tx
0

as xn ! x
0

() T (xn � x
0

) ! 0Y as (xn � x
0

) ! 0X

zn=xn�x0() Tzn ! 0Y as zn ! 0X ,

so that, for linear operators, continuity at the origin is the same as continuity everywhere (x
0

is arbitrary).

To see that boundedness and continuity at the origin are equivalent, assume first that T is
bounded. Then

kTxkY  kTkkxkX ! 0 as kxkX ! 0,

so that T is also continuous. Contrariwise, assume that T is continuous at the origin. Then

kTxkY = kTx� T0kY  " for kxkX = kx� 0kX  �.

But T is linear, so by scaling x (replace x with �x) we obtain

kTxkY  "

�
for kxkX  1.

Thus T is bounded.
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Ex.

Any linear operator T 2 L(X,Y ) defined on a finite-dimensional normed space X is
continuous. Reason: identify X ⇠= Rn and note that

ran(T ) = span{Te
1

, . . . , T en} ⇠= Rm for some m  n,

where {e
1

, . . . , en} is a basis for Rn. Hence,

T : X ⇠= Rn ! Rm ⇠= Ỹ ⇢ Y

is a linear transformation onto a finite-dimensional subspace Ỹ of Y , and, as such, has
a matrix representation

T : x 7! Ax =
�

n
X

j=1

aijxj

�m

i=1

.

All norms on a finite-dimensional vector space are equivalent, so whatever the norms of
X and Y , we can consider any suitable norms for Rn ⇠= X and Rm ⇠= Ỹ . Choose, for
example, the l1-norm: then

kAxkl1 = max
1im

�

�

n
X

j=1

aijxj

�

�  nmax
i,j

|aij |max
j

|xj | = nmax
i,j

|aij |kxkl1 .

This means that T is bounded with kTk  nmaxi,j |aij |, and therefore also continuous.

N.b. Equivalent norms yield the same open and closed sets, the same convergence, but not
the same constants in the estimates – in particular, the exact value of kTk depends on the
norms for X and Y .

} The kernel of a bounded operator is closed

Let T 2 B(X,Y ). Then ker(T ) is a closed subspace of X. In particular, if X is a Banach space,
so is ker(T ).

Proof

Take

{xn}n2N ⇢ ker(T ); lim
n!1

xn = x
0

2 X.

We want to show that x
0

2 ker(T ). But this follows from the continuity of T :

kTx
0

kY = kTx
0

� TxnkY  kTkkx
0

� xnkX ! 0 as xn ! x
0

=) Tx
0

= 0.

If, furthermore, X is complete, so is the closed subspace ker(T ) ⇢ X.
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Ex.

The null space of a matrix A 2 Mm⇥n(R) is a closed subspace of Rn.

In L
2

((�⇡,⇡),R), the kernel of the bounded linear functional

T : f 7! 1

⇡

Z ⇡

�⇡

f(t) sin(t) dt

is a closed subspace; it consists of all functions with zero Fourier coe�cient before sin(t)
in its Fourier expansion.
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Chapter 3

Solving di↵erential equations

3.1 General existence theorems

Let | · | denote the Euclidean norm on Rn.

Initial-value problems

Let (t
0

, x
0

) be a fixed point in an open subset I⇥U ⇢ R⇥Rn, and f 2 C(I⇥U,Rn) a continuous
vector-valued function on this subset. The problem of finding x 2 C1(J, U) such that

ẋ(t) = f(t, x(t)), x(t
0

) = x
0

, (IVP)

for some possibly smaller interval J ⇢ I is called an initial-value problem. Here, ẋ = d
dtx.

} Reformulation of real-valued ODEs as first-order systems

Any ordinary di↵erential equation

x(n)(t) = g(t, x(t), ẋ(t), . . . , x(n�1)(t)),

with initial conditions

x(t
0

) = x
1

, ẋ(t
0

) = x
2

, . . . , x(n�1)(t
0

) = xn,

and g continuous in some open set I⇥U ⇢ R⇥Rn containing (t
0

, x
1

, . . . , xn), can be reformulated
in the form (IVP).

Proof

Let

y
0

:= x, y
1

:= ẋ, . . . , yn�1

:= x(n�1).

Then
2

6

6

6

4

ẏ
0

...
ẏn�2

ẏn�1

3

7

7

7

5

=

2

6

6

6

4

y
1

...
yn�1

g(t, y
0

, . . . , yn�1

)

3

7

7

7

5

describes y = (y
0

, . . . , yn�1

) as a function I ! U ⇢ Rn for some interval I ⇢ R; the function
f 2 C(I ⇥ U,Rn) is the vector-valued function given by the right-hand side of this system.
The initial condition is y(t

0

) = (x
1

, . . . , xn).
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Ex.

The second-order ordinary di↵erential equation

ẍ+ sin(x) = 0, x(0) = 1, ẋ(0) = 2,

is equivalent to the system



ẏ
0

ẏ
1

�

=



y
1

� sin(y
0

)

�

with



y
0

y
1

�

t=0

=



1
2

�

.

In this case

f : R2 ! R2,



y
0

y
1

�

7!


y
1

� sin(y
0

)

�

is independent of time.

} The Peano existence theorem

For any (t
0

, x
0

) 2 I⇥U there exists " > 0 such that the initial-value problem (IVP) has a solution
defined for |t� t

0

| < ". The solution x = x(·; t
0

, x
0

) 2 C1(B"(t0), U).

N.b. The Peano existence theorem guarantees the existence of (local) solutions, but not their
uniqueness.

Ex.

The initial-value problem

(

ẋ = 3

2

x1/3, t � 0,

ẋ = 0, t < 0,
x(0) = 0,

has the trivial solution x ⌘ 0, but also the ones given by

(

x(t) = ±t3/2, t � 0,

x(t) = 0, t < 0.

To remedy this lack of uniqueness in Peano’s theorem one needs the concept of Lipschitz continuity.

Lipschitz continuity

A continuous function f 2 C(I ⇥U,Rn) is said to be locally Lipschitz continuous with respect
to its second variable x 2 U if for any (t

0

, x
0

) 2 I ⇥ U there exists ", L > 0 with

|f(t, x)� f(t, y)|  L |x� y|, for all (t, x), (t, y) 2 B"(t0, x0

).

The set of locally Lipschitz continuous functions on I ⇥U form a vector space, Lip(I ⇥U,Rn). If
the Lipschitz constant L does not depend on the point (t

0

, x
0

), then the Lipschitz condition is said
to be uniform (f is then uniformly Lipschitz continuous). A locally Lipschitz continuous function
is uniformly Lipschitz continuous on any compact set.1

N.b. Any continuously di↵erentiable function is also locally Lipschitz continuous, and hence
unformly Lipschitz on any compact set.

1A compact set in a metric space is a set in which every sequence has a convergent subsequence (converging
to an element in the set). The Bolzano–Weierstrass theorem states that, in Rn, the compact sets are exactly those
that are closed and bounded.
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Proof (for anyone interested in ODEs)

If f is continuously di↵erentiable, then

f(t, x)� f(t, y) =

Z

1

0

d

ds
f(t, sx+ (1� s)y) ds =

✓

Z

1

0

Dxf(t, sx+ (1� s)y) ds

◆

(x� y),

where Dxf is the Jacobian matrix of f(t, ·), and (x � y) 2 Rn is a vector. For each fixed
triple (t, x, y) the matrix

T (t, x, y) :=

Z

1

0

Dxf(t, sx+ (1� s)y) ds

defines a bounded linear transformation on Rn, so that

|T (t, x, y)z|  kT (t, x, y)k|z|, z 2 Rn.

Since Dxf is continuous, so is T (in all its variables); and since norms are continuous, the
composition

(t, x, y) 7! kT (t, x, yk is continuous =) Ct0,x0,y0 := max
|t�t0|"
|x�x0|"
|y�y0|"

kT (t, x, y)k < 1.

Taken together, we have that

|f(t, x)� f(t, y)| = |T (t, x, y)(x� y)|  kT (t, x, y)k|x� y|  Ct0,x0,y0 |x� y|

for all (t, x), (t, y) 2 B"(t0, x0

). (The ball B"(t0, x0

) is actually a bit smaller than the square
described by |x � x

0

|  ", |t � t
0

|  ", where we have proved the statement, but we do not
need more.)
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Ex.

Consider f : R ! R (one spatial variable, no time).

x 7! sin(x) is continuously di↵erentiable. It is also uniformly Lipschitz, since

| sin(x)� sin(y)|  max
⇠2R

| cos(⇠)||x� y|.

x 7! x2 is continuously di↵erentiable. It is locally Lipschitz, since

|x2 � y2| = |x+ y||x� y|.

x 7! |x| is not continuously di↵erentiable. It is however (uniformly) Lipschitz, since

||x|� |y||  |x� y|.

x 7!
p

|x| is continuous but not locally Lipschitz, since it cannot have a finite Lipschitz
constant at x

0

= 0:

p

|x|
|x| ! 1 as x ! 0.

In particular, this shows that C1(R) ( Lip(R) ( C0(R).1

The Banach fixed-point theorem and its applications
To solve the initial-value problem (IVP) we shall reformulate it as

x(t) = x
0

+

Z t

t0

f(s, x(s)) ds, x 2 BC(I, U),

where the right-hand side defines a (not necessarily linear) mapping

T : BC(J, U) ! BC(J, U), x 7! x
0

+

Z t

t0

f(s, x(s)) ds,

for some smaller interval J = [t
0

� ", t
0

+ "] ⇢ I. This is because, if x and f are continuous, so is

s 7! f(s, x(s)), so the integral
R t

t0
f(s, x(s)) ds is continuous (even C1) and bounded on compact

intervals. The idea then is that, if f is also Lipschitz, then T contracts points for small |t�t
0

|  ":

|Tx(t)� Ty(t)| =
�

�

�

Z t

t0

�

f(s, x(s))� f(s, y(s))
�

ds
�

�

�


Z t

t0

�

�f(s, x(s))� f(s, y(s))
�

� ds


Z t

t0

L|x(s)� y(s)| ds  L|t� t
0

|kx� ykBC(J,U)

Thus, if "L < 1, taking the maximum over t 2 J yields

kTx� TykBC(J,U)

 �kx� ykBC(J,U)

, for � = "L < 1,

so that Tx and Ty are closer to each other than x and y. As we shall now see, that gives us a
local and unique solution of our problem.

1This is the reason why Lipschitz continuity is sometimes denoted by C

1�; Lipschitz is just slightly worse than
being continuously di↵erentiable. In this notation Lip(I⇥U,Rn) = C

0,1�(I⇥U,Rn), to clarify that f is continuous
with respect to its first variable and Lipschitz with respect to its second.
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Contractions

Let (X, d) be metric space. A mapping T : X ! X is called a contraction if there exists � < 1
such that

d(T (x), T (y))  � d(x, y), for all x, y 2 X.

In particular, contractions are continuous.

N.b. The uniformity of the constant � < 1 is important; it is not enough that d(T (x), T (y)) <
d(x, y) for each pair (x, y) 2 X ⇥X.

} The Banach fixed-point theorem

Let T be a contraction on a complete metric space (X, d) with X 6= ;. Then there exists a unique
x 2 X such that T (x) = x.

Proof (if you are to learn one proof, this is the one)

Existence of a candidate for x: Let x
0

2 X,

x
1

:= T (x
0

), xn+1

:= T (xn) = Tn+1(x
0

), n 2 N.

For n > m � n
0

, we have that

d(xn, xm)
�-ineq.


n
X

k=m+1

d(xk, xk�1

)
def.xn=

n
X

k=m+1

d
�

T k(x
0

), T k�1(x
0

)
�

contr.


n
X

k=m+1

�k�1d(x
1

, x
0

) = d(x
1

, x
0

)�m
n�m�1

X

k=0

�k

geom. series

= d(x
1

, x
0

)�m 1� �n�m

1� �
 �n0

1� �
d(x

1

, x
0

)
n0!1! 0.

Thus {xn}n is Cauchy. By assumption, (X, d) is complete, so there exists x := limn!1 xn 2
X.

x is a fixed point for T :

0  d(x, T (x))  d(x, xn) + d(xn, T (xn)) + d(T (xn), T (x))

 d(x, xn) + d(xn, xn+1

) + � d(xn, x)

 d(x, xn)
| {z }

!0

+ �n
|{z}

!0

d(x
0

, x
1

) + � d(xn, x)
| {z }

!0

! 0, as n ! 1.

That is: x = T (x) is a fixed point for T .

Uniqueness: Assume that y = T (y). Then

0  d(x, y) = d(T (x), T (y))  � d(x, y)
�<1

=) d(x, y) = 0 =) y = x.

Well-posedness for the initial-value problem (IVP)

} The Picard–Lindelöf theorem

Let f : I⇥U ! Rn be locally Lipschitz continuous with respect to its second variable and (t
0

, x
0

)
a point in I ⇥ U determining the initial data. Then, for each ⌘ > 0, there exists " > 0 such that
the initial-value problem (IVP) has a unique solution x 2 C1(B"(t0), B⌘(x0

)).
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Proof (as outlined above)

Equivalence of formulations: If x 2 C1(I, U) solves (IVP), then

x(t) = x
0

+

Z t

t0

f(s, x(s)) ds, (1)

by integration. Contrariwise, if x 2 C(I, U) fulfils (1), then x is a C1(I, U)-solution (this
follows from the Fundamental Theorem of Calculus). Thus, the initial-value problem (IVP)
for x 2 C1(I, U) is equivalent to (1) for x 2 C0(I, U).

Some constants: Let � > 0 be such that [t
0

� �, t
0

+ �] ⇢ I. Fix an arbitrary constant
⌘ > 0. Let

R := [t
0

� �, t
0

+ �]⇥B⌘(x0

), M := max
(t,x)2R

|f(t, x)|,

" := min

⇢

�,
⌘

M
,

1

2L

�

, J := [t
0

� ", t
0

+ "],

where L denotes the Lipschitz constant for T in R (since R is compact, f is uniformly
Lipschitz continuous on R).

Definition of T: For v 2 BC(J,Rn), define

T (v)(t) := x
0

+

Z t

t0

f(s, v(s)) ds, t 2 J,

and consider

X := {v 2 BC(J,Rn) : v(t
0

) = x
0

, sup
t2J

|x
0

� v(t)|  ⌘},

which is a closed subset of BC(J,Rn). Note that BC(J,Rn) is a complete metric space with
respect to the metric

d(v
1

, v
2

) := max
t2J

|v
1

(t)� v
2

(t)|,

so that (X, d)—by virtue of being a closed metric subspace of a complete metric space—is a
complete metric space itself.

T maps X into X: If v 2 X, then T (v)(t
0

) = x
0

and

|x
0

� T (v)(t)| =
�

�

�

�

Z t

t0

f(s, v(s)) ds

�

�

�

�

 |t� t
0

| max
t2J

|f(t, v(t))|
v(t)2B⌘(x0)

 "M  ⌘,

by the definitions of R,M, " and J .

T is a contraction on X: Let v
1

, v
2

2 X. Then

|T (v
1

)(t)� T (v
2

)(t)| =
�

�

�

�

Z t

t0

�

f(s, v
1

(s))� f(s, v
2

(s))
�

ds

�

�

�

�

 " max
|s�t0||t�t0|

�

�f(s, v
1

(s))� f(s, v
2

(s))
�

�

 "L max
|s�t0||t�t0|

|v
1

(s)� v
2

(s)|

 1

2

max
s2J

|v
1

(s)� v
2

(s)|,
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by the definition ". Now, taking the maximum over all t 2 J yields

d(T (v
1

), T (v
2

))  1

2
d(v

1

, v
2

).

Thus, according to the Banach fixed-point theorem, there exists a unique solution x 2
BC(J,B⌘(x0

)).

} Picard iteration

Under the assumptions of the Picard-Lindelöf theorem, the sequence given by

x
0

= x(t
0

), xn = Txn�1

, n 2 N; (Tx)(t) = x
0

+

Z t

t0

f(s, x(s)) ds,

converges uniformly and exponentially fast to the unique solution x on J = [t
0

� ", t
0

+ "]:

kxn � xkBC(J,Rn
)

 �n

1� �
kx

1

� x
0

kBC(J,Rn
)

,

where � = "L is the contraction constant used in the proof of the Picard–Lindelöf theorem.1

Proof

According to the proof of the Banach fixed-point theorem, if m � n one has

d(xn, xm)  �n

1� �
d(x

1

, x
0

),

where � 2 (0, 1) is the contraction constant. We apply this to the operator T , the metric
d, and the constants " and L as defined in the proof of the Picard–Lindelöf theorem. Since
limm!1 xm = x and d(xn, ·) = kxn � ·kBC(J,Rn

)

is continuous, the proposition follows.

Ex.

The first Picard iteration for the initial-value problem

ẋ =
p
x+ x3, x(1) = 2,

is given by

x
1

(t) = 2 +

Z t

1

�

p
2 + 23

�

ds = 2 + (
p
2 + 8)(t� 1).

The second is

x
2

(t) = 2 +

Z t

1

�

p

x
1

(s) + (x
1

(s))3
�

ds.

(This indicates that Picard iteration, in spite of its simplicity and fast convergence, is better
suited as a theoretical and computer-aided tool, than as a way to solve ODE’s by hand.)

1It is possible to refine both the estimate for � and the size of the interval in di↵erent ways, but we will not
pursue this here.
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3.2 Spectral theory

Let A 2 Mn⇥n(C) be the realization of a bounded linear transformation Cn ! Cn (standard basis
assumed), and let | · | denote the standard unitary norm on Cn,

|(z
1

, . . . , zn)| =
�

n
X

j=1

|zj |2
�

1/2
; |zj |2 = |xj + iyj |2 = |xj |2 + |yj |2.

In this section, most entities considered will be complex. You can think of A as real, but, if so,
still describing a bounded linear map Cn ! Cn.

Existence theory for constant-coe�cient linear ODE’s
Consider

u̇ = Au, u(0) = u
0

2 Cn. (1)

(The choice t
0

= 0 is irrelevant, since u(·�t
0

) is a solution exactly if u is.) Note that the right-hand
side f(u) = Au is uniformly Lipschitz with

|Au�Av|  kAk|u� v|, kAk = sup
|u|=1

|Au|,

so that this problem is locally and uniquely solvable. As we shall see, any solution can be globally
continued on R, and even explicitly constructed.

The spectrum of an operator

Let T 2 B(X) be a bounded linear transformation X ! X (for example, T : Cn ! Cn given by
A).

� 2 C is called an eigenvalue of T if there exists a nonzero v 2 X such that

Tv = �v.

The vector v is called an eigenvector corresponding to the eigenvalue �.

The set of values � 2 C for which (T ��I) is invertible with a bounded inverse (T ��I)�1 2
B(X) is called the resolvent set of T . Its complement in C, denoted �(T ), is called the
spectrum of T .

For matrices, the spectrum consists only of eigenvalues

For A 2 Mn⇥n(C),

�(A) = {� 2 C : det(A� �I) = 0}

consists of the roots (�
1

, . . . ,�n) of the characteristic polynomial pA(�)
def.

= det(A��I); these
are identical with the eigenvalues of A.

N.b. Defining properties of the determinant are not treated in this course; the determinant of a
square matrix is the product of the final diagonal pivots in its reduced row echelon form (at the
end of the Gauss–Jordan elimination).

Proof

Since Cn is finite-dimensional, we have that

9v 6= 0; (A� �)v = 0 () ker(A� �I) nontrivial

() (A� �I) not invertible () det(A� �I) = 0,

where the last equivalence follows, either from linear algebra, or from considering the reduced
row echelon form of the matrix A��I. The proposition then follows by noting that det(A��I)
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is a polynomial in � of degree n (which, according to the fundamental theorem of algebra,
has n roots).

Multiplicity

The multiplicity of a root � of pA(�) is the algebraic multiplicity of the the eigenvalue �,
denoted mult(�).

The eigenvectors corresponding to an eigenvalue � span a subspace of Cn,

ker(A� �I),

called the eigenspace of �. The dimension of this space is the geometric multiplicity of
�.

An eigenvalue � is called simple if � is simple as a root of pA(�),

� simple
def() mult(�) = 1;

it is semi-simple if the geometric and algebraic multiplicity coincide,

� semi-simple
def() mult(�) = dimker(A� �I).

As we will see, if all eigenvalues of A are semi-simple, then A can be diagonalized.

} Characterization of solution spaces

The solution set of u̇ = Au is a vector space isomorphic to Cn. If A is real and only real initial
data u

0

2 Rn is considered, then the solution space is isomorphic to Rn.

Proof

By the Picard–Lindelöf theorem, the solution map u
0

'7! u(·;u
0

) is well defined.

Injectivity. If '(u
0

) = '(v
0

) are two identical solutions, then clearly '(u
0

)(0) = '(v
0

)(0),
meaning u

0

= v
0

.

Surjectivity. The map ' is surjective onto the set of solutions: any solution v of v̇ = Av
gives rise to initial data v

0

:= v(0), which in turn generates a solution u(·; v
0

). By uniqueness
v = u = '(v

0

), so that v 2 ran(').

Linearity. ' is linear: if v solves (1) with v(0) = v
0

, and w solves (1) with w(0) = w
0

, then
u = �v + µw solves (1) with u(0) = �v

0

+ µw
0

.

Conclusion: Thus ' : Cn ! '(Cn) is a vector space isomorphism onto its image, which
consequently is a complex vector space of dimension n. Since we have shown that the image
'(Cn) consists of all solutions of u̇ = Au, the proposition follows.

Fundamental matrix

A basis {uj}nj=1

of solutions is called a fundamental system for u̇ = Au; the corresponding
matrix (uj)j is a fundamental matrix.

N.b. According to the above characterization, a set of solutions {uj}j is a fundamental system
exactly if {uj(0)}j is a basis for Cn (or Rn if we are considering real solutions).

The exponential map for square matrices

The map

exp(A)
def.

=
1
X

j=0

Aj

j!
= I +A+

A2

2
+

A3

3!
+ . . . , A 2 L(Cn),

also written eA, is called the exponential of A.
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The exponential map is well defined

Let A 2 L(Cn). Then exp(A) 2 L(Cn) (in particular, exp(A) is a matrix).

Proof

Recall that L(Cn) = B(Cn) as linear spaces, and that B(Cn) is a Banach space with the
operator norm as norm. The statement exp(A) 2 L(Cn) is thus equivalent with that

lim
N!1

N
X

j=0

Aj

j!
| {z }

=:yN

is well-defined as a limit in B(Cn). For N � m we have

kyN � ymk 
N
X

j=m+1

kAjk
j!


1
X

j=m+1

kAkj

j!
! 0,

as N � m ! 1. Hence {yN}N is Cauchy and converges in B(Cn). The same argument
without ym shows that

k exp(A)k  ekAk.

Properties of the exponential map

If AB = BA, then

B exp(A) = exp(A)B and exp(A+B) = exp(A) exp(B).

If T 2 Mn⇥n(Cn) is invertible, then

T exp(A)T�1 = exp(TAT�1).

exp(A) is invertible with
�

exp(A)
��1

= exp(�A).

[t 7! exp(tA)] is continuously di↵erentiable with

d

dt
exp(tA) = A exp(tA).

Solution formula

The unique solution of (1) is

u(t;u
0

) = exp(tA)u
0

,

and exp(tA) is a fundamental matrix with exp(tA)|t=0

= I.

Proof

Since

d

dt
exp(tA) = A exp(tA),

exp(tA) solves the matrix equation Ẋ = AX. This means that each column of exp(tA)
solves u̇ = Au. Since exp(tA) is invertible, the columns are linearly independent, so they
must span the solution space (it is n-dimensional, as we have proved). Thus exp(tA) is a
fundamental matrix. That exp(0) = exp(tA)|t=0

= I follows immediately from the definition
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of the exponential map.

Now, multiplying exp(tA) from the right with u
0

yields the solution of the initial-value
problem (1), since

d

dt
exp(tA)u

0

= A exp(tA)u
0

,

and

u(0) = exp(tA)|t=0

u
0

= Iu
0

= u
0

.

Spectral decompositions
If A is nilpotent, i.e., if

An0 = 0 for some n
0

2 N,

then exp(A)—and therefore exp(tA)—is a finite sum:

exp(A) =
1
X

j=0

Aj

j!
=

n0�1

X

j=0

Aj

j!
= I +A+ . . .+

An0�1

(n
0

� 1)!
.

In general, other methods must be employed.

Cayley–Hamilton

A matrix satisfies its characteristic polynomial: pA(A) = 0.

N.b. Since pA is a polynomial of degree n, this implies that An can be replaced with a polynomial
of degree at most n � 1. Hence exp(A) can be reduced to a polynomial in A of degree at most
n� 1. This is the basis for the spectral decomposition below.

Algebraic description of the solution space

Let � 2 C denote an eigenvalue of A.

A vector v 6= 0 is called a generalized eigenvector if (A� �I)kv = 0 for some k 2 N; we
call

Nk := ker
�

(A� �I)k
�

a generalized eigenspace corresponding to the eigenvalue �.

Each eigenvalue has a maximal generalized eigenspace

There exists a minimal integer, k� 2 N, such that Nk = Nk� for all k � k�.

Proof

Since

(A� �)v = 0 =) (A� �)2v = 0,

we have

{0} ⇢ Nk ⇢ Nk+1

⇢ Cn, k 2 N,

and since Nk are linear spaces, all contained in the n-dimensional space Cn, this chain must
end:

9 minimal k� � 1; Nk = Nk� for all k � k�.
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Let

Rk := ran((A� �I)k), k 2 N.

The Riesz index m� is the minimal natural number that ends the chain {Rk}k:

m�
def.

= min{k 2 N : Rk = Rk+1

}.

The vector spaces Rk satisfy

{0} ⇢ Rk+1

⇢ Rk ⇢ Cn, with Rk = Rm� for all k � m�.

Riesz decomposition

We have k� = m�, and

Cn = N(�)�R(�) := ker ((A� �I)m�)� ran ((A� �I)m�) .

Spectral decomposition

Cn can be decomposed into maximal generalized eigenspaces N(�k) with dim(N(�k)) = mult(�k):

Cn = �m
k=1

N(�k).

Here m is the number of di↵erent eigenvalues (not counted with multiplicity).

Sketch of steps

Let nk := mult(�k). Using Cayley–Hamilton one can show that

Cn = �m
k=1

ker((A� �kI)
nk),

and then furthermore (using the Riesz decomposition) that

nk = dim(N(�k)) and nk � m�k ,

so that

ker((�kI �A)nk) = N(�k).

The fact that the algebraic multiplicity is the dimension of the maximal generalized eigenspace
implies that � is sempi-simple exactly if m� = 1.

The matrix form of the spectral decomposition

According to the above, Cn = �m
k=1

N(�k) has a basis of generalized eigenvectors. Let

Ak := A|N(�k)
, Ik := I|N(�k)

, Ñk := Ak � �kIk, k = 1, . . . ,m,

be the restrictions of the mappings A, I and A� �kI onto the eigenspaces N(�k) (meaning that
they act only on the basis vectors of the corresponding eigenspaces). Then Ñk is nilpotent, since

Ñ
m�k
k = 0

on the generalized eigenspace N(�k) (this is the definition of m�k). In our basis of generalized
eigenvectors A takes the form

2

6

6

6

4

[A
1

] 0 0 . . . 0
0 [A

2

] 0 . . . 0
...

. . .
...

0 . . . 0 [Am]

3

7

7

7

5

n⇥n

=

2

6

6

6

4

[�
1

I
1

+ Ñ
1

] 0 0 . . . 0
0 [�

2

I
2

+ Ñ
2

] 0 . . . 0
...

. . .
...

0 . . . 0 [�mIm + Ñm]

3

7

7

7

5

n⇥n

.
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Because ÑkIk = IkÑk, exp(t�kIk) = et�Ik, and Ñ
m�k
k = 0 one has

exp(tAk) = exp
�

t(�kIk + Ñk)
�

= exp
�

t�kIk
�

exp
⇣

tÑk

⌘

= et�k
�

Ik + tÑk + . . .+
(tÑk)

m�k
�1

(m�k � 1)!

�

,

and then

exp(t T [Ak]kT
�1

| {z }

tA in original basis

) = T exp(t[Ak]k)T
�1 (T change-of-basis matrix).

One only needs to find suitable bases for N(�k), k = 1, . . . ,m.

Ex.

The matrix

A :=

2

4

0 �8 4
0 2 0
2 3 �2

3

5

has eigenvalues �
1,2 = 2 and �

3

= �4. Its generalized eigenvectors solve

(A� 2I)2v =

2

4

12 28 �24
0 0 0

�12 �28 24

3

5 v = 0 , v = s

2

4

2
0
1

3

5+ t

2

4

0
6
7

3

5 s, t 2 C,

and

(A+ 4I) v = 0 , v = s

2

4

�1
0
1

3

5 s 2 C.

Let

T :=

2

4

2 0 �1
0 6 0
1 7 1

3

5 so that T�1 =
1

18

2

4

6 �7 6
0 3 0
�6 �14 12

3

5 , T�1AT =

2

4

2 �10 0
0 2 0
0 0 �4

3

5 .

In the basis given by T we have

I
1

=



1 0
0 1

�

, Ñ
1

=



0 �10
0 0

�

with A
1

= 2I
1

+ Ñ
1

,

exp(tA
1

) = exp(2tI
1

) exp(tÑ
1

) = e2t(I
1

+ tÑ
1

) = e2t


1 �10t
0 1

�

,

and

exp(tT�1AT ) =

2

4

e2t �10te2t 0
0 e2t 0
0 0 e�4t

3

5 .

Expressed in the original basis,

exp(tA) = T exp(tT�1AT )T�1 =
1

9
e2t

2

4

6 �7 6
0 9 0
3 7 3

3

5� 1

3
te2t

2

4

0 10 0
0 0 0
0 5 0

3

5+
1

9
e�4t

2

4

3 7 �6
0 0 0
�3 �7 6

3

5 .
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Applications: the Jordan normal form and finite-dimensional spectral
theorem
The Jordan normal form

The Jordan normal form corresponds to a spectral decomposition in which the bases for N(�k)
are chosen such that the nilpotent matrices Ñk have the special form

Ñ�k =

2

6

6

6

6

6

6

4

0 j
1

0 . . . 0

0 0 j
2

. . .
...

...
. . .

. . . 0
0 0 . . . 0 jnk�1

0 0 . . . 0 0

3

7

7

7

7

7

7

5

, jl 2 {0, 1}, l = 1, . . . , nk � 1,

with nk = mult(�k), and

Ak = �kIk + Ñ�k =

2

6

6

6

6

6

6

4

�k j
1

0 . . . 0

0 �k j
2

. . .
...

...
. . .

. . . 0
0 0 . . . �k jnk�1

0 0 . . . 0 �k

3

7

7

7

7

7

7

5

.

To obtain this, given an eigenvalue �, pick a generalized eigenvector

vm� 2 ker(A� �I)m� , vm� 62 ker(A� �I)m��1

and set

vm��1

:= (A� �I)vm� , . . . , v
1

:= (A� �I)m��1vm� ,

so that

vj 2 ker
�

(A� �I)j
�

, vj 62 ker
�

(A� �I)j�1

�

, j = 1, . . . ,m�.

The Jordan chain {v
1

, . . . , vm�} is a basis for a subspace of N(�), on which

Ñvj = (A� �I)vj = vj�1

, j = 1, . . . ,m�,

if we let v
0

:= 0. Hence, the j:th column of Ñ is vj�1

. This gives the nilpotent part of a so-called
Jordan block (with ones above the diagonal, all other elements zero). If m� < nk additional
Jordan chains need to be added. Each chain gives rise to a Jordan block; adding the di↵erent
chains into a basis for N(�) gives the form of Ñ above.

Ex. (continued from above)

The eigenvalues of

A :=

2

4

0 �8 4
0 2 0
2 3 �2

3

5

are �
1

= 2 (double) and �
2

= �4 (simple).

Since mult(2) = 2, we have k
2

= m
2

 2, so we can start the Jordan chain by looking for a
vector in N

2

(which equals the maximal generalized eigenspace N(2)). Candidates are (cf.
above):

u =

2

4

2
0
1

3

5 and w =

2

4

0
6
7

3

5 .
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Since (A� 2I)u = 0 we have u 2 N
1

, whereas

(A� 2I)w =

2

4

�20
0

�10

3

5 = �10u

implies that

v
2

:= w 2 N
2

\N
1

whereas v
1

:= (A� 2I)w = �10u 2 N
1

.

The Jordan block corresponding to the simple eigenvalue �4 consists of just the eigenvalue
itself, and the eigenvector spanning the one-dimensional eigenspace N(�4) is ṽ

1

:= (�1, 0, 1),
as calculated above.

The change-of-basis matrix is thus given by

T := [v
1

v
2

ṽ
1

] =

2

4

�20 0 �1
0 6 0

�10 7 1

3

5 ,

in which the linear transformation expressed by A in the original basis takes the Jordan
normal form1

2

4

2 1 0
0 2 0
0 0 �4

3

5 .

The spectral theorem for Hermitian matrices

For A 2 Mn⇥n(C) the matrix A⇤ defined by a⇤ij := aji is called its adjoint or conjugate
transpose. Equivalently,

A⇤ = At,

where At is the transpose of A.

A is said to be Hermitian (or self-adjoint) if A = A⇤.

The spectral theorem says that any Hermitian matrix admits a basis of eigenvectors in which
A can be diagonalized, and that this basis can be chosen to be orthonormal, meaning that the
basis vectors are of unit length and perpendicular to each other.2

N.b. If a matrix can be diagonalized, this can always be achieved using the spectral (or Jordan)
decomposition (though the corresponding basis need not be orthonormal).

1As can be seen, the spectral decomposition above brought as very close to the Jordan normal form, which will
typically happen if the Jordan chains are few or short (low algebraic multiplicity).

2We will come back to this later.
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Chapter 4

Hilbert space theory

4.1 Inner-product spaces

Let X be a vector space over K 2 {R,C}.

Inner-product spaces
An inner product h·, ·i onX is a mapX⇥X ! K, (x, y) 7! hx, yi, that is conjugate symmetric

hx, yi = hy, xi,

linear in its first argument,

h�x, yi = �hx, yi,
hx+ y, zi = hx, zi+ hy, zi,

and non-degenerate (positive definite),

hx, xi > 0 for x 6= 0,

with x, y, z 2 X and � 2 K arbitrary. The pair (X, h·, ·i) is called an inner-product space.

Ex.

The canonical inner product is the dot product in Rn:

hx, yi := x · y =
n
X

j=1

xjyj .

For matrices in Mn⇥n(R) one can define a dot product by setting

hA,Bi := tr(BtA),

where tr(C) =
Pn

j=1

cjj is the trace of a matrix C, and Bt is the transponse of B. Then

BtA =
n
X

j=1

btijajk =
n
X

j=1

bjiajk,
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and

tr(BtA) =
n
X

k=1

n
X

j=1

bjkajk =
X

1j,kn

ajkbjk

coincides with the dot product on Rnn ⇠= Mn⇥n(R).

Properties of the inner product

An inner product satisfies

(i) hx, y + zi = hx, yi+ hx, zi,
(ii) hx,�yi = �̄hx, yi,
(iii) hx, 0i = h0, xi = 0,

(iv) If hx, zi = 0 for all z 2 X then x = 0.

N.b. By linearity, the last property implies that if hx, zi = hy, zi for all z 2 X, then x =
y.

Proof

(i)

hx, y + zi = hy + z, xi = hy, xi+ hz, xi = hy, xi+ hz, xi = hx, yi+ hx, zi.

(ii)

hx,�yi = h�y, xi = �hy, xi = �̄hx, yi.

(iii)

h0, xi = h0x, xi = 0hx, xi = 0,

and

hx, 0i = h0, xi = 0.

(iv)

hx, zi = 0 for all z 2 X =) hx, xi = 0 =) x = 0.

Inner-product spaces as normed spaces

An inner-product space (X, h·, ·i) carries a natural norm given by kxk := hx, xi1/2. To prove this,
we need:

The Cauchy–Schwarz inequality

For all x, y 2 (X, h·, ·i),

|hx, yi|  kxkkyk,

with equality if and only if x and y are linearly dependent.
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Proof

Linearly dependent case: Without loss of generality, assume that x = �y (if y = �x we
can always relabel the vectors). Then

|hx, yi| = |h�y, yi| = |�|hy, yi
= |�|kyk2 = k�ykkyk = kxkkyk.

Linearly independent case: If x��y 6= 0 and y��x 6= 0 for all � 2 K, then also x, y 6= 0,
and

0 < hx+ �y, x+ �yi
= hx, x+ �yi+ �hy, x+ �yi
= hx, xi+ hx,�yi+ �hy, xi+ �hy,�yi
= kxk2 + �̄hx, yi+ �hx, yi+ ��̄kyk2

= kxk2 + 2<
�

�̄hx, yi
�

+ |�|2kyk2.

If hx, yi = 0 the Cauchy–Schwarz inequality is trivial, so assume that hx, yi 6= 0. Let � := tu

with u := hx,yi
|hx,yi| , so that

�̄hx, yi = t
hx, yihx, yi
|hx, yi| = t|hx, yi| and |�|2 = t2.

Hence,

0 < kxk2 + 2t|hx, yi|+ t2kyk2 =
⇣

kykt+ |hx, yi|
kyk

⌘

2

+ kxk2 �
⇣ |hx, yi|

kyk

⌘

2

.

By choosing t = �|hx, yi|/kyk2, we obtain that

|hx, yi|2

kyk2 < kxk2,

which proves the assertion.

Inner-product spaces are normed

If (X, h·, ·i) is an inner-product space, then kxk = hx, xi1/2 defines a norm on X.

Proof

Positive homogeneity:

k�xk = h�x,�xi1/2 =
�

��̄hx, xi
�

1/2
=
�

|�|2kxk2
�

1/2
= |�|kxk.

Triangle inequality: By the Cauchy–Schwarz inequality,

kx+ yk2 = kxk2 + 2<hx, yi+ kyk2

 kxk2 + 2|hx, yi|+ kyk2

 kxk2 + 2kxkkyk+ kyk2

=
�

kxk+ kyk
�

2

.

Non-degeneracy:

kxk = 0 () kxk2 = 0 () hx, xi = 0 () x = 0,
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according to the positive definiteness of the inner product.

Parallelogram law and polarization identity

Let (X, k · k) be a normed space. Then the parallelogram law

kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2

holds exactly if k · k = h·, ·i1/2 can be defined using an inner product on X. If so,

hx, yi = 1

4

�

kx+ yk2 � kx� yk2
�

,

if X is real, and

hx, yi = 1

4

3

X

k=0

ikkx+ ikyk2,

if X is complex.

Proof

We only show that the parallelogram law and polarization identity hold in an inner product
space; the other direction (starting with a norm and the parallelogram identity to define an
inner product) is left as an exercise.

Parallelogram law: If X is an inner-product space, then

kx± yk2 = kxk2 ± 2<hx, yi+ kyk2;

the parallelogram law follows from adding these two equations to each other.

Polarization identity: When X is a real inner-product space, it follows directly that

kx+ yk2 � kx� yk2 =
�

kxk2 + 2hx, yi+ kyk2
�

�
�

kxk2 � 2hx, yi+ kyk2
�

= 4hx, yi.

If X is complex, the corresponding calculcation yields that

3

X

k=0

ikkx+ ikyk2 =
3

X

k=0

ik
�

kxk2 + 2<hx, ikyi+ kikyk2
�

=
�

kxk2 + 2<hx, yi+ kyk2
�

�
�

kxk2 � 2<hx, yi+ kyk2
�

+ i
�

kxk2 � 2<ihx, yi+ kyk2
�

� i
�

kxk2 + 2<ihx, yi+ kyk2
�

.

Since <iz = �=z for any z 2 C, we obtain

3

X

k=0

ikkx+ ikyk2 = 4<hx, yi+ 4=hx, yi = 4hx, yi.

Ex.

Pythagoras’ theorem: If hx, yi = 0 in an inner-product space, then

kx+ yk2 = kxk2 + kyk2,

which, in R2, we recognize as

a2 + b2 = c2,
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with a, b, c the sides of a right-angled triangle.

If we define hx, yi := 1

4

�

kx+ yk2 � kx� yk2
�

in R2 using the polarization identity , we
see that

hx, yi = 1

4

�

(x
1

+ y
1

)2 + (x
2

+ y
2

)2
�

� 1

4

�

(x
1

� y
1

)2 + (x
2

� y
2

)2
�

=
1

4

�

x2

1

+ 2x
1

y
1

+ y2
1

+ x2

2

+ 2x
2

y
2

+ y2
2

�

� 1

4

�

x2

1

� 2x
1

y
1

+ y2
1

+ x2

2

� 2x
2

y
2

+ y2
2

�

= x
1

y
1

+ x
2

y
2

is the standard dot product.

Hilbert spaces
A complete inner-product space is called a Hilbert space. Similarly, inner-product spaces
are sometimes called pre-Hilbert spaces.

Ex.

The Banach spaces Rn, l
2

(R) and L
2

(I,R), as well as their complex counterparts Cn,
l
2

(C) and L
2

(I,C), all have norms that come from inner products:

hx, yiCn =
n
X

j=1

xj ȳj in Cn,

hx, yil2 =
1
X

j=1

xj ȳj in l
2

,

and

hx, yiL2 =

Z

I

x(s)y(s) ds in L
2

.

(If the spaces are real, there are no complex conjugates.) Thus, they are all Hilbert
spaces. In particular, this proves the l

2

- and L
2

-norms defined earlier in this course are
indeed norms.

The space of real-valued bounded continuous functions on a finite open interval, BC((a, b),R),
can be equipped with the L

2

-inner product. This is a pre-Hilbert space, the completion
of which is L

2

((a, b),R).

Convex sets and the closest point property

Let X be a linear space. A subset M ⇢ X is called convex if

x, y 2 M =) tx+ (1� t)y 2 M for all t 2 (0, 1),

i.e., if all points in M can be joined by line segments in M .
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Ex.

Any hyperbox {x 2 Rn : aj  xj  bj} is convex.

Intuitively, any region with a ’hole’, like Rn \B
1

, is not convex.

Linear subspaces are convex:

x, y 2 M =) µx+ �y 2 M for all scalars µ,�,

clearly implies that tx+ (1� t)y 2 M for all t 2 (0, 1).

Closest point property (Minimal distance theorem)

Let H be a Hilbert space, and M ⇢ H a non-empty, closed and convex subset of H. For any
x
0

2 H there is a unique element y
0

2 M such that

kx
0

� y
0

k = inf
y2M

kx
0

� yk.

N.b. The number infy2M kx
0

�yk is the distance from x
0

toM , denoted dist(x
0

,M).

Proof

A minimizing sequence: Since M 6= ;, the number d := infy2M kx
0

� yk is finite and non-
negative, and by the definition of infinimum, there exists a minimizing sequence {yj}j2N ⇢ M
such that

lim
j!1

kx
0

� yjk = d.

{yj}j2N is Cauchy: By the parallelogram law applied to x
0

� yn, x0

� ym, we have

k2x
0

� (ym + yn)k2 + kym � ynk2 = 2kx
0

� ymk2 + 2kx
0

� ynk2 ! 4d2, m, n ! 1.

In view of that M is convex and d minimal, we also have that

k2x
0

� (ym + yn)k2 = 4
�

�

�

x
0

� ym + yn
2

�

�

�

2

� 4d2.

Consequently,

kym � ynk2 ! 0 as m,n ! 1.

Since M ⇢ H is closed and H is complete, there exists

y
0

= lim
j!1

yj 2 M with kx
0

� y
0

k = lim
j!1

kx
0

� yjk = d.

Uniqueness: Suppose that z
0

2 M satisfies kx
0

� z
0

k = d. Then y0+z0
2

2 M and the
parallelogram law (applied to x

0

� y
0

, x
0

� z
0

) yields that

ky
0

� z
0

k2 = 2kx
0

� y
0

k2 + 2kx
0

� z
0

k2 � 4
�

�

�

x
0

� y
0

+ z
0

2

�

�

�

2

 2d2 + 2d2 � 4d2 = 0,

so that z
0

= y
0

.
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Ex.

In the Hilbert space R2:

– The closed unit disk {x2

1

+ x2

2

 1} contains a unique element that minimizes the
distance to the point (2, 0) (namely (1, 0)).

– The subgraph {x
2

 x2

1

} is closed but not convex; it has more than one point
minimizing the distance to the point (0, 1).

– The open unit ball {x2

1

+ x2

2

< 1} is convex but not closed; it has no element
minimizing the distance to a point outside itself.

Let

Mn := span{eikx}nk=�n

be the closed linear span of trigonometric functions 1, eix, e�ix . . . , einx, e�inx 2 L
2

((�⇡,⇡),C).
For any n 2 N and any f 2 L

2

((�⇡,⇡),C) there is a unique linear combination of such
functions that minimizes the L

2

-distance to f :

Z ⇡

�⇡

�

�f(x)�
n
X

k=�n

cke
ikx

�

�

2

dx = min
g2Mn

Z ⇡

�⇡

�

�f(x)� g(x)
�

�

2

dx.

The coe�cients ck are known as (complex) Fourier coe�cients of the function f .

4.2 Orthogonality

Consider an inner-product space (X, h·, ·i) over a field K 2 {R,C}. When X is complete, we shall
write H to indicate that it is a Hilbert space.

The projection and Riesz representation theorems
Orthogonal vectors and set

Two vectors x, y 2 X are said to be orthogonal,

x ? y
def() hx, yi = 0.

A vector x 2 X is said to be orthogonal to a set M ⇢ X,

x ? M
def() hx, yi = 0 for all y 2 M.

Two sets M,N ⇢ X are said to be orthogonal,

M ? N
def() hx, yi = 0 for all x 2 M, y 2 N.

The orthogonal complement of a set M 2 X consists of all vectors orthogonal to M :

M? def.

= {x 2 X : x ? M}.

The word perpendicular is sometimes used interchangeably with ’orthogonal’, but mostly in
Rn.
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Ex.

In R3, the vector (1, 2, 1) is orthogonal to the plane {x
1

+ 2x
2

+ x
3

= 0}.

In L
2

((�⇡,⇡),C) the vectors eikx, k 2 Z, are all orthogonal to each other:

heik1x, eik2xi =
Z ⇡

�⇡

eik1xeik2x dx =

Z ⇡

�⇡

ei(k1�k2)x dx =
ei(k1�k2)x

i(k
1

� k
2

)

�

�

�

�

⇡

�⇡

= 0 for k
1

6= k
2

,

by periodicity of eikx = cos(kx) + i sin(kx).

In l
2

(R), with e
1

= (1, 0, 0, . . .),

{e
1

}? = {x 2 l
2

(R) : x = (0, x
2

, x
3

, . . .)}.

* In a Hilbert space, H = �m
j=1

Hj for subspaces Hj ⇢ H means that

x =
m
X

j=1

xj , xj 2 Hj , Hj ? Hk for j 6= k,

which gives a unique representation of any x 2 H in terms of elements in orthogonal sub-
spaces.1

Ex.

R3 = span{(1, 0, 0)}� span{(0, 1, 0), (0, 0, 1)},

but also

R3 = span{(1, 2, 1)}� {x
1

+ 2x
2

+ x
3

= 0}.

The projection theorem

Let M ⇢ H be a closed linear subspace of a Hilbert space H. Then H = M �M?.

Proof

Existence of y
0

2 M : Pick x
0

2 H. By the minimal distance theorem, there exists a unique
point y

0

2 M with

kx
0

� y
0

k = inf
y2M

kx
0

� yk.

Existence of x
0

� y
0

2 M?: Since M is a subspace, y
0

+ �y 2 M for any y 2 M , � 2 K.
Hence

kx
0

� y
0

k2  kx
0

� y
0

� �yk2 = kx
0

� y
0

k2 � 2<(�hy, x
0

� y
0

i) + |�|2kyk2,

and

�2<(�hy, x
0

� y
0

i) + |�|2kyk2 � 0.

By taking � = " ⌧ 1, we see that

<(�hy, x
0

� y
0

i)  0,

1Note that, in general, not all direct sums describe orthogonal subspaces.
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and, similarly, by taking � = �i", that

=(�hy, x
0

� y
0

i)  0.

Since y 2 M is arbitrary, by exchanging �y for y, we obtain

hy, x
0

� y
0

i = 0 for any y 2 M.

Thus we can write

x
0

= y
0

+ (x
0

� y
0

), where y
0

2 M, x
0

� y
0

2 M?.

Uniqueness: If we have two representations x
0

= y
0

+ z
0

and x
0

= ỹ
0

+ z̃
0

, then

M 3 y
0

� ỹ
0

= z̃
0

� z
0

2 M?,

but only the zero vector is orthogonal to itself, implying that y
0

= ỹ
0

and z
0

= z̃
0

.

Ex.

The null space of a matrix A 2 Mm⇥n(R) is closed linear subspace, so that Rn =
ker(A) � (ker(A))?. The geometric rank–nullity theorem characterizes the orthogonal
complement as the range of the transpose matrix:

Rn = ker(A)� ran(At).

Corollary: strict subspace characterization

If M ( H is a closed linear subspace of H, there exists a non-zero vector z
0

2 H with z
0

?
M .

Proof

Since M 6= H there exists x
0

2 H \M . According to the projection theorem, x
0

= y
0

+ z
0

with y
0

2 M , z
0

2 M?. Then z
0

6= 0, and z
0

? M is the vector we are looking for.

Ex.

Let M = l
0

be the closure of

l
0

= {x 2 l
2

: {xj}j2N has finitely many non-zero entries}

in l
2

. Is M = l
2

? Say there exists z 2 l
2

such that z ? M . Since {ej}j2N ⇢ M , we have

hz, eji = zj = 0 for all j 2 N.

Thus z = 0, and l
0

= l
2

.

The Riesz representation theorem

A Hilbert space is its own dual: every bounded linear functional T 2 B(H,K) is given by an inner
product,

Tx = hx, zi,

for a unique z 2 H. Moreover, kTkB(H,K)

= kzkH .

N.b. Note that any function x 7! hx, yi defines a bounded linear functional on H.
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Proof

Existence: Let

N = ker(T ).

Then N is a closed linear subspace of H. If N = H, we have T = 0 in B(H,K) and
Tx = hx, 0i.

Assume now that N 6= H. According to the corollary above, there exists z
0

2 N?, z
0

6= 0.
Since z

0

? ker(T ) we have Tz
0

6= 0. Consequently,

x� Tx

Tz
0

z
0

2 ker(T ) for all x 2 H,

implying

D

x� Tx

Tz
0

z
0

, z
0

E

= 0 , Tx
D 1

Tz
0

z
0

, z
0

E

= hx, z
0

i , Tx =
Tz

0

kz
0

k2 hx, z0i =
D

x,
Tz

0

kz
0

k2 z0
E

.

Thus

Tx = hx, zi for z :=
Tz

0

kz
0

k2 z0.

Uniqueness: If, in addition,

Tx = hx,wi for all x 2 H,

then

hx, z � wi = Tx� Tx = 0 for all x 2 H,

so that z = w.

Equality of norms: We have

kTk = sup
kxk=1

|Tx| = sup
kxk=1

|hx, zi|  sup
kxk=1

kxkkzk = kzk,

by the Cauchy–Schwarz inequality. Contrariwise,

kzk2 = hz, zi = |Tz|  kTkkzk =) kzk  kTk.

Thus kTk = kzk.
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Ex.

Cn is its own dual: every bounded linear functional on Cn is realized by a dot product:
Tx = x · y.

L
2

(R,R) is its own dual: every bounded linear functional on L
2

(R,R) is realized by an
inner product: Tf =

R

R f(s)g(s) ds. By the Cauchy–Schwarz inequality,

|Tf | = |hf, gi| =
�

�

�

Z

R
f(s)g(s) ds

�

�

�


⇣

Z

R
|f(s)|2 ds

⌘

1/2⇣
Z

R
|g(s)|2 ds

⌘

1/2

= kfkkgk,

with equality for f = �g; hence, kTk = ||gk.

Orthonormal systems, Bessel’s inequality and the Fourier series theorem
A sequence {ej}j2N is called orthogonal if ej ? ek for j 6= k. If, in addition, kejk = 1 for
all j 2 N, it is called orthonormal.

An orthonormal sequence is called complete if there are no non-zero vectors orthogonal to
it:

K complete
def() K? = {0}.

If {ej}j2N ⇢ H is an orthonormal sequence, the projection hx, eji is called the jth Fourier
coe↵ecient of x. The series

P

j2Nhx, ejiej is called the Fourier series of x with respect
to the sequence {ej}j2N.

N.b. All the above definition carry over to general (finite or infinite) sets, called orthonormal
systems.

Ex.

The canonical basis {ej}j is an orthonormal basis in Rn, Cn and l
2

(real or complex).

The sequence { 1p
2⇡

eikx}k2Z is an ortonormal sequence in L
2

((�⇡,⇡),C), since

k 1p
2⇡

eikxk =
⇣

Z ⇡

�⇡

1p
2⇡

eikx 1p
2⇡

eikx dx
⌘

1/2

=
⇣ 1

2⇡

Z ⇡

�⇡

eikxe�ikx dx
⌘

1/2

= 1.

Bessel’s inequality

An othonormal sequence satisfies
P

j2N |hx, eji|2  kxk2, for all x 2 X.

Proof

0 
�

�

�

x�
N
X

j=1

hx, ejiej
�

�

�

2

= kxk2 � 2<
D

x,

N
X

j=1

hx, ejiej
E

+
D

N
X

j=1

hx, ejiej ,
N
X

k=1

hx, ekiek
E

= kxk2 � 2<
N
X

j=1

hx, ejihx, eji+
N
X

j=1

N
X

k=1

hx, ejihx, ekihej , eki

= kxk2 �
N
X

j=1

|hx, eji|2.
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Thus

N
X

j=1

|hx, eji|2  kxk2,

irrespective of N 2 N. Bessel’s inequality is obtained by letting N ! 1.

Fourier coe�cients are best possible coe�cients

An orthonormal sequence satisfies

�

�

�

x�
N
X

j=1

�jej

�

�

�

�
�

�

�

x�
N
X

j=1

hx, ejiej
�

�

�

,

for any N 2 N and any scalars �
1

, . . . ,�N 2 K. Equality holds if and only if �j = hx, eji for all
j 2 N.

Proof

�

�

�

x�
N
X

j=1

�jej

�

�

�

2

= kxk2 � 2<
D

x,

N
X

j=1

�jej

E

+
�

�

�

N
X

j=1

�jej

�

�

�

2

= kxk2 � 2<
N
X

j=1

�jhx, eji+
N
X

j=1

|�j |2

= kxk2 +
n
X

j=1

|hx, eji � �j |2 �
N
X

j=1

|hx, eji|2

� kxk2 �
N
X

j=1

|hx, eji|2

=
�

�

�

x�
N
X

j=1

hx, ejiej
�

�

�

2

,

where the last equality comes from the proof of Bessel’s inequality.

Corollary: closest point

If {e
1

, . . . , en} is an orthonormal system, then y =
Pn

j=1

hx, ejiej is the closest point to x in
span{e

1

, . . . , en}, with d = kx� yk given by

d2 = kxk2 �
N
X

j=1

|hx, eji|2.

N.b. In particular, if x 2 span{e
1

, . . . , en}, then x =
PN

j=1

hx, ejiej .

Proof

Since Fourier coe�cients are best possible, there is no better approximation of x in span{e
1

, . . . , en}.
The distance formula follows from the proof of Bessel’s inequality.
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Ex.

In R3, what is the closest point in the plane spanned by e
1

:= 1p
2

(1, 1, 0) and e
2

:=

(0, 0, 1) to the point x = (2, 1, 1)? We have

hx, e
1

ie
1

+ hx, e
2

ie
2

=
�

(2, 1, 1) · 1p
2

(1, 1, 0)
�

1p
2

(1, 1, 0) +
�

(2, 1, 1) · (0, 0, 1)
�

(0, 0, 1)

= 3

2

(1, 1, 0) + (0, 0, 1) = ( 3
2

, 3

2

, 1).

The distance is

�

kxk2 � |hx, e
1

i|2 � |hx, e
2

i|2
�

1/2
=
�

6� 9

2

� 1
�

1/2
=

1p
2
,

which can be checked to fit with |(2, 1, 1)� ( 3
2

, 3

2

, 1)|.

Convergence as an l2-property (in Hilbert spaces)

Let {ej}j2N be an orthonormal sequence in a Hilbert space H, and {�j}j2N a sequence of scalars.
Then

9 lim
N!1

N
X

j=1

�jej in H ()
1
X

j=1

|�j |2 < 1.

In that case, k
P

j2N �jejk2 =
P

j2N |�j |2.

N.b. A consequence of this is that every infinite-dimensional separable Hilbert space can be
identified with l

2

. If the Hilbert space is finite, it can be identified with Rn or Cn; if it is not
separable, it is bigger than l

2

.

Proof

Let xn :=
Pn

j=1

�jej . For m > n,

kxm � xnk2 =
�

�

�

m
X

j=n+1

�jej

�

�

�

2

=
m
X

j,k=n+1

�j�khej , eki =
m
X

j=n+1

|�j |2,

meaning that {xn}n2N is Cauchy exactly if
P1

j=1

|�j |2 converges in R. Since H is complete,
this happens exactly if {xn}n2N converges in H. A similar calculation shows that

�

�

�

m
X

j=1

�jej

�

�

�

2

=
m
X

j=1

|�j |2.

When (one of) these sums converge we may let m ! 1 to obtain the desired equality.

An orthonormal system {ej}j ⇢ H is called an orthonormal basis for H if

x =
X

j

hx, ejiej for all x 2 H.

Ex.

In Rn, Cn, l
2

(R) and l
2

(C), the canonical basis {ej}j is also an orthonormal basis.

The vectors

1p
2

(1, 1, 0), 1p
2

(1,�1, 0), (0, 0, 1)

form an orthonormal basis for R3.
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{ 1p
2

, cos(x), sin(x), cos(2x), sin(2x), . . .} is an orthonormal basis for L
2

((�⇡,⇡),R) if we
equip it with the inner product

hf, gi = 1

⇡

Z ⇡

�⇡

f(x)g(x) dx.

(One may also use the standard inner product and scale the functions with 1/
p
⇡.)

{eikx}k2Z is an orthonormal basis for L
2

((�⇡,⇡),C) if we equip it with the inner product

hf, gi = 1

2⇡

Z ⇡

�⇡

f(x)g(x) dx.

Equivalently, one may use the standard inner product and scale the functions with
1/
p
2⇡.

The Fourier series theorem

Let M = {ej}j2N be an orthonormal sequence in a Hilbert space H. Then the following are
equivalent:

M is complete.

span(M) = H.

M is an orthonormal basis for H.

For all x 2 H, kx||2 =
P

j2N |hx, eji|2.

N.b.

An analog result holds for orthonormal systems (in particular: for finite sets).

The last equality is known as Parseval’s identity.

Proof

(i) =) (ii): If M is complete, then M? = {0}, so that span(M) = H (else, there would
exists a non-zero vector in its orthogonal complement.

(ii) =) (iii): If span(M) = H, then, for any x 2 H, there exist {�j}j2N such that

lim
N!1

N
X

j=1

�jej = x.

But

�

�

�

N
X

j=1

�jej � x
�

�

�

2

�
�

�

�

N
X

j=1

hx, ejiej � x
�

�

�

2

� 0,

so that x =
P1

j=1

hx, ejiej .

(iii) =) (iv): If M is an orthonormal basis, it is immediate that

kxk2 =
D

X

j2N
hx, ejiej ,

X

j2N
hx, ejiej

E

=
X

j2N
|hx, eji|2.

(iv) =) (i): Finally, if kxk2 =
P

j2N |hx, eji|2 for all x 2 H, and x ? M , then kxk = 0.

Hence, there is no non-zero vector in M?, which is the definition of M being complete.
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Ex.

Consider L
2

((�⇡,⇡),C) with the orthonormal basis {eikx}k2Z and the inner product

hf, gi = 1

2⇡

Z ⇡

�⇡

f(x)g(x) dx.

The Fourier coe�cients are given by

f̂k := hf, eik·i = 1

2⇡

Z ⇡

�⇡

f(x)e�ikx dx,

and Parseval’s identity states that

kfk2 =
1

2⇡

Z ⇡

�⇡

|f(x)|2 dx =
1
X

k=�1
|f̂k|2 =

1
X

k=�1
|hf, eik·i|2.

4.3 Adjoints and decompositions

Consider a Hilbert space H over a field K 2 {R,C}. Most of the results in this section will be for
the cases H = Rn and H = Cn.

Adjoints
Let T 2 B(H) be a bounded linear operator H ! H.

The adjoint of T is the operator T ⇤ 2 B(H) defined by

hTx, yi = hx, T ⇤yi for all x, y 2 H.

T is called self-adjoint if T = T ⇤.

Properties of the adjoint

The adjoint is well defined: for each T 2 B(H), there exists a unique T ⇤ 2 B(H). The map
⇤ : B(H) ! B(H), T 7! T ⇤ satisfies the following properties:

It is anti-linear: (µS + �T )⇤ = µS⇤ + �T ⇤, for all S, T 2 B(H) and µ,� 2 K.

It is bounded with unit norm: kT ⇤k = kTk.

It is invertible with itself as inverse: (T ⇤)⇤ = T .

N.b. We adopt the convention that T ⇤⇤ def.

= (T ⇤)⇤.

Proof

Existence of the adjoint: For each y 2 H, the map x 7! hTx, yi is a bounded linear
functional, since by the Cauchy–Schwarz inequality and the boundedness of T ,

|hTx, yi|  kTxkkyk  kTkkxkkyk.

The Riesz representation theorem thus guarantees that there exists a unique element y⇤ 2 H
with

hTx, yi = hx, y⇤i.

Define T ⇤y := y⇤.
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Linearity and boundedness of the adjoint: Since �y⇤
1

+ µy⇤
2

is the unique element
corresponding to the functional hTx,�y

1

+ µy
2

i, the map y 7! T ⇤y is linear. It is also
bounded: we have

|hx, T ⇤yi| = |hTx, yi|  kTkkxkkyk,

so by choosing x = T ⇤y we obtain

kT ⇤yk2  kTkkT ⇤ykkyk =) kT ⇤yk  kTkkyk,

so that kT ⇤k  kTk. But since T ⇤⇤ = T , we also obtain that kTk  kT ⇤k, whence kT ⇤k =
kTk.

Anti-linearity and boundedness of *: Since

hx, (µS + �T )⇤yi = h(µS + �T )x, yi = µhSx, yi+ �hTx, yi = µhx, S⇤yi+ �hx, T ⇤yi = hx, (µS⇤ + �T ⇤)yi,

the map ⇤ is anti-linear:

(µS + �T )⇤ = µS⇤ + �T ⇤.

In view of that kTk = kT ⇤k it follows that ⇤ is bounded with norm 1.

Invertibility of *:

hTx, yi = hx, T ⇤yi = hT ⇤y, xi = hy, T ⇤⇤xi = hT ⇤⇤x, yi,

so that h(T � T ⇤⇤)x, yi = 0 for all x, y 2 H. Choose y = (T � T ⇤⇤)x. Then

k(T � T ⇤⇤)xk2 = 0 for all x 2 H,

meaning that T = T ⇤⇤ in B(H).

The adjoint of a matrix

For matrices, we extend this definition (in that A need not map H to H):

The adjoint of A 2 Mm⇥n(R) is its transpose At 2 Mn⇥m(R).

The adjoint of A 2 Mm⇥n(C) is its conjugate transpose A⇤ 2 Mn⇥m(C).

N.b. Note that, in the case m = n, this fits with the above definition if one adopts the standard
inner product on Kn.

Self-adjoint matrices are symmetric or hermitian

If T 2 B(Rn) is realized by a matrix A 2 Mn⇥n(R), T is self-adjoint if and only if A is
symmetric.

If T 2 B(Cn) is realized by a matrix A 2 Mn⇥n(C), T is self-adjoint if and only if A is
hermitian.

Proof

Real case:

hTx, yi = hx, Tyi () ytAx = (Ay)tx = ytAtx.

By considering x = ej , y = ek we get that Ajk = At
jk for all j, k = 1, . . . , n.
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Complex case:

hTx, yi = hx, Tyi () y⇤Ax = (Ay)⇤x = y⇤A⇤x.

By considering x = ej , y = ek we get that Ajk = A⇤
jk for all j, k = 1, . . . , n.

Self-adjoint operators have real spectrum

The eigenvalues of a self-adjoint operator are real, and eigenspaces corresponding to di↵erent
eigenvalues are orthogonal.

Proof

If T = T ⇤, then

hTx, xi = hx, Txi = hTx, xi 2 R for all x 2 H.

Hence, if µ,� 2 C, µ 6= �, are eigenvalues of T , with eigenvectors x, y, respectively, then

µkxk2 = hµx, xi = hTx, xi 2 R,

so that µ 2 R (and, similarly, � 2 R). Then

(µ� �)hx, yi = hµx, yi � hx,�yi = hTx, yi � hx, Tyi = 0,

since T is self-adjoint. Thus x ? y.

Unitary operators and orthogonal matrices

An operator U 2 B(H) is called unitary if UU⇤ = U⇤U = Id. Similarly, a matrix A 2
Mn⇥n(K) is called unitary if the corresponding operator is unitary, i.e., if A⇤A = I.

A unitary real matrix Q 2 Mn⇥n(R) is called orthogonal.

Unitary operators preserve inner products

If U 2 B(H) is unitary, then

hUx,Uyi = hx, yi, for all x, y 2 H.

In particular, U is an isometry.

Proof

hUx,Uyi = hx, U⇤Uyi = hx, yi.

Lemma: there are no nontrivial nilpotent self-adjoint operators

If N = N⇤ satisfies Nk = 0 for some k 2 N, then N = 0.

Proof

If N2 = 0, consider

kNxk2 = hNx,Nxi = hx,N2xi = 0,

to see that Nx = 0 for all x 2 H.

Else, let k
0

� 2 be the smallest positive even number such that N2k0 = 0, and note that

kNk0xk2 = hNk0x,Nk0xi = hx,N2k0xi = 0.
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Hence, Nk0 = 0 and either k = k
0

or k = k
0

+ 1 is a strictly smaller positive even number
satisfying Nk = 0. This is a contradiction, so there is no such number k

0

.

Orthogonal matrices matrices describe orthonormal bases

The columns {Q
1

, . . . , Qn} of an orthogonal (unitary) matrix Q is an orthonormal basis for Rn

(CN ).

N.b. The same is true for the rows of Q.

Proof

Since the rows of Q⇤ are columns of Q, we have

Q⇤Q = ((Qi)i)
⇤(Qj)j = (Qi ·Qj)ij = I

if and only if Qi ? Qj for i 6= j, and |Qi| = 1.

The spectral theorem
Let A 2 Mn⇥n(K) be symmetric (hermitian). Then there exists an orthonormal basis {Qj}nj=1

for Rn (Cn) of eigenvectors of A, such that

A = QDQ⇤,

where Q is the orthogonal (unitary) matrix with columns (Qj)j and D is a diagonal matrix with
the eigenvalues of A as its diagonal elements.

N.b. It is possible to extend the spectral theorem to all normal matrices, characterized by
AA⇤ = A⇤A.1

Proof

Each eigenspace is maximal: Let � an eigenvalue of A and pick x 2 ker((A��I)2). Since
A is self-adjoint with real eigenvalues we have

0 = h(A� �I)2x, xi = k(A� �I)xk2 =) x 2 ker(A� �I).

Hence the Riesz index of � is 1, and all eigenvalues are semi-simple, meaning that dim(ker(A�
�I)) = mult(�).

Applying the spectral decomposition: The statement now follows from the spectral (or
Jordan) decomposition: The maximal generalized eigenspaces coincide with the eigenspaces,
these are mutually orthogonal, and we may pick an orthonormal basis for each of them.
Together, these form an orthonormal basis for Kn, described by Q.

Diagonalization by direct computation: With D + N representing the diagonal and
nilpotent part of the spectral representation of A, one can see directly that

Q(D +N)Q�1 = A = A⇤ = (Q(D +N)Q�1)⇤ = (Q�1)⇤(D +N)⇤Q⇤ = Q(D +N⇤)Q�1,

in view of that D = D⇤ is a diagonal real matrix. By applying Q�1 = Q⇤ from the left and
Q = (Q⇤)�1 from the right, we obtain that N = N⇤, whence N = 0 by the above lemma.
Thus, A is diagonalized by the spectral decomposition given by the orthonormal basis Q.

Positive definiteness
Let A = At 2 Mn⇥n(R) be a symmetric matrix.

1In fact, the class of normal matrices is the biggest class of matrices for which the spectral theorem holds.
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A is said to be positive definite if

hAx, xi = xtAx > 0 for x 6= 0.

A is said to be positive semi-definite if hAx, xi = xtAx � 0 for all x 2 Rn.

Characterization of positive definite matrices

A symmetric matrix A = At 2 Mn⇥n(R) is positive definite exactly if one (and hence all) of the
following conditions hold:

hA·, ·i defines an inner product.

All the eigenvalues of A are strictly positive.

A = RtR for some invertible matrix R.

Proof (contains important methods)

Inner-product property. Assume that A is positive definite. Since x 7! Ax, Rn ! Rn, is
linear, and the usual inner product is sesqui-linear (linear in its first argument, anti-linear in
its second), the form

(x, y) 7! hAx, yi, Rn ⇥ Rn ! R,

is also sesqui-linear. Furthermore,

hAx, yi = hx,Ayi = hAy, xi,

by the symmetry of A and of the standard inner product, and

hAx, xi > 0 for x 6= 0,

by the definition of positive definiteness, so the inner product hA·, ·i is non-degenerate sym-
metric.

Considering the same arguments, one also sees that hA·, ·i cannot be an inner product unless
A is positive definite.

Eigenvalue property: Since A is symmetric, there exists an orthonormal basis of eigen-
vectors {v

1

, . . . , vn} with Avj = �jvj . Let xj be the coordinates of a vector x in this basis.
Then

hAx, xi =
D

A

n
X

j=1

xjvj ,

n
X

k=1

xkvk

E

=
D

n
X

j=1

xj(Avj),
n
X

k=1

xkvk

E

=
n
X

j,k=1

�jhxjvj , xkvki = �jx
2

j > 0

for all x 6= 0 if and only if �j > 0 for all j = 1, . . . , n.

Factorization property: If A = RtR with R invertible, then

hAx, xi = hRtRx, xi = kRxk2 > 0,

unless Rx = 0, which happens only if x = 0 (as R is invertible).

Contrariwise, if A is symmetric and positive definite, we can write

A = QtDQ = Qt
p
D
p
DQ = Qt(

p
D)t

p
DQ = (

p
DQ)t(

p
DQ),

where Q is an orthogonal matrix of eigenvectors, D = (�j)j is a diagonal matrix with positive
eigenvalues, and

p
D = (

p

�j)j has
p

�j as diagonal elements. Thus, A = RTR.
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The Cholesky decomposition

An alternative to the spectral decomposition used in the proof of that A = RtR for positive
definite matrices is the Cholesky decomposition: If one divides out the main pivots (diagonal
elements) in the LU -factorization of A, one gets an LDU -decomposition, D being a diagonal
matrix with the main pivots as diagonal elements, and L and U having only unit elements on
their main diagonals. This factorization is unique. We thus obtain

LDU = A = At = (LDU)t = U tDtLt = U tDLt,

where U t is lower triangular, and Lt is upper triangular. By uniqueness of the LDU -factorization,
we must have L = U t and U = Lt. Consequently,

A = LDLt = L
p
D
p
DLt = L

p
D(L

p
D)t,

with L
p
D being invertible (

p
D has only positive elements along the diagonal and L is lower

triangular with units along the diagonal).

Singular values
The singular value theorem

Let A 2 Mm⇥n(R) be the realization of a linear transformation Rn ! Rm, such that rank(A) = r.
Then AtA is a positive semi-definite matrix of rank r, and there exists an orthonormal basis of
eigenvectors of AtA,

{v
1

, . . . , vn} ⇢ Rn, with eigenvalues �2

1

� . . . � �2

r > 0, �2

r+1

= . . . = �2

n = 0,

and a corresponding orthonormal basis

{u
1

, . . . , ur, ur+1

, . . . , um} := { 1

�
1

Av
1

, . . . ,
1

�r
Avr, ur+1

, . . . , um}

for Rm (ur+1

, . . . , um arbitrary to fit the orthonormal basis), such that

Avj =

(

�juj , j = 1, . . . , r,

0, j = r + 1, . . . , n.

The unique scalars �
1

, . . . ,�r, 0, . . . , 0 (extended to a total of min(m,n)) are called singular
values of A. If

(⌃ij)ij := (�ij�j)ij 2 Mm⇥n(R)

is the diagonal matrix with �
1

, . . . ,�r, 0, . . . , 0 on its main diagonal, U = (uj)j 2 Mm⇥m(R) is the
orthogonal matrix with uj as columns, and V = (vj)j 2 Mn⇥n(R) is the orthogonal matrix with
vj as columns, it follows that

A = U⌃V �1 = U⌃V t.

This is the singular value decomposition of A.

N.b. The singular values for At equals those of A. For At, the orthonormal bases V and U are
simply exchanged (in comparison to A).

The pseudoinverse

A finite-dimensional linear transformation can always be inverted on its range. Let A 2 Mm⇥n(R)
be the realization of a linear transformation Rn ! Rm, and let

A|
ker(A)

? : ker(A)? ! ran(A)

be the restriction of A to the orthogonal complement of its null space. Then (according to
the rank–nullity theorem) A|

ker(A)

is bijective. Its inverse, A†, is called the (Moore-Penrose)
pseudoinverse:

A† : ran(A) ! ker(A)?, A†(Ax) = x.
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The pseudoinverse from the singular value decomposition

If A = U⌃V t is the singular value decomposition of A 2 Mm⇥n(R), using the bases {uj}j and
{vj}j , we only have to invert Avj = �juj for j = 1, . . . , r.

More precisely, if

(⌃†
ij)ij = (�ij

1

�j
)ij 2 Mn⇥m(R)

is the diagonal matrix with the reciprocals of the singular values along its main diagonal, then

A† = V ⌃†U t

is the singular value decomposition of the pseudoinverse A†.

The Gram–Schmidt orthogonalization and QR-decompositions
Gram–Schmidt

A set {v
1

, . . . , vn} ⇢ H of linearly independent vectors can transform into an orthonormal system
using the Gram–Schmidt orthogonalization algorithm.1 Define

e
1

:=
v
1

kv
1

k ,

ẽ
2

:= v
2

� hv
2

, e
1

ie
1

, e
2

:=
ẽ
2

kẽ
2

k ,

and, recursively,

ẽk+1

:= vk+1

�
k
X

j=1

hvk+1

, ejiej , ek+1

:=
ẽk+1

kẽk+1

k , k = 1, . . . , n� 1.

Then {e
1

, . . . , en} is an orthonormal system.

QR-decompositions

If, in the Gram–Schmidt orthoghonalization, we express the vectors {v
1

, . . . , vn} in terms of
{e

1

, . . . , en}, we obtain

v
1

= hv
1

, e
1

ie
1

, v
2

= hv
2

, e
1

ie
1

+ hv
2

, e
2

ie
2

, vk =
k
X

j=1

hvk, ejiej ,

which can be seen either by direct calculation or from the ’closest point’-corollary (since span{v
1

, . . . vk} =
span{e

1

, . . . ek} for k = 1, . . . , n). This gives us the QR-decomposition of a full-rank matrix A:

If A = [v
1

, . . . , vn] 2 Mn⇥n(R) is matrix of full rank (so that its column vectors span Rn),
the Gram–Schmidt orthogonalization applied to the columns vectors v

1

, . . . , vn yields the QR-
decomposition of A:

A = QR =
⇥

[e
1

] [e
2

] · · · [en]
⇤

2

6

6

6

4

hv
1

, e
1

i hv
2

, e
1

i . . . hvn, e1i
0 hv

2

, e
2

i . . . hvn, e2i
...

. . .
...

0 0 . . . hvn, eni

3

7

7

7

5

,

where Q is orthogonal (Qt = Q�1), and R is upper (right) triangular. Consequently, one can
calculate R = QtA by finding the orthonormal basis given by Q.

N.b.
1The Gram–Schmidt orthogonalization is equally valid for linearly independent sequences.
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It is possible to extend the QR-decomposition to general rectangular matrices.

Just like the LU-decomposition, the QR-decomposition can help in solving linear systems,
since

Ax = b () QRx = b () Rx = Qtb,

where R is uppper triangular.
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