TMA4150/MA2201 - ANSWERS TO MIDTERM EXAM 2007

Problem 1 The first and fifth are groups. The second and fourth are not closed under multiplication mod 6 and permutation product, respectively, and the third lacks left inverses.

Problem 2 Since $100=2^{2} \cdot 5^{2}$, there are four non-isomorphic groups of order 100:

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}, \quad \mathbb{Z}_{4} \times \mathbb{Z}_{25}
$$

Problem 3 The order of the element is $\operatorname{lcm}(3,5,5)=15$.
Problem $4 \mathbb{Z}_{3} \times \mathbb{Z}_{36} \times \mathbb{Z}_{10} \simeq \mathbb{Z}_{3} \times\left(\mathbb{Z}_{4} \times \mathbb{Z}_{9}\right) \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{5}\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}$
Problem 5 Note: There is a mistake in the Problem statement. There are only two homomorphisms. ϕ_{1} and ϕ_{5} are homomorphisms.

Problem 6 The order of σ is 6 , so the index is $\frac{6!}{6}=5!=120$.

Problem 7

- True : By Lagrange's theorem, N must have order 7 or 11 , which gives G / N an order of 11 or 7 , respectively. In both cases, G / N has prime order, and must be cyclic.
- False : $H_{1} \cup H_{2}$ is not necessarily closed under the operation. For an example, consider $H_{1}=3 \mathbb{Z} \leq \mathbb{Z}$ and $H_{2}=5 \mathbb{Z} \leq \mathbb{Z} .3+5=8 \notin 3 \mathbb{Z} \cup 5 \mathbb{Z}$.
- False : This is not true in general unless ϕ is 1-1. Consider for instance $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{k}$ which sends n to its residue modulo k.
- True: There are three subgroups of order 2 (cyclic subgroups generated by the transpositions) and one of order 3 (the alternating subgroup, consisting of the 3 -cycles and the identity).

Problem $8 G / H \simeq\left(\mathbb{R}^{*}, \cdot\right)$. (Consider $\phi: G \rightarrow \mathbb{R}^{*}, \phi(X)=\operatorname{det}(X)$. Since $\operatorname{det}(X Y)=$ $\operatorname{det}(X) \operatorname{det}(Y)$, it is a homomorphism. Moreover, it is onto (check this!) and the kernel is H.)

Problem 9 The second argument is correct.
Problem 10 The symmetry group is D_{4}, which has 8 elements.

$$
\text { Number of colourings: }=\frac{1}{8}\left(4^{4}+4+4^{2}+4+4^{3}+4^{3}+4^{2}+4^{2}\right)=55
$$

