Motivation: The pendulum

Pendulum equation:

$$
\begin{equation*}
\ddot{x}+\omega^{2} \sin x=0 . \tag{1}
\end{equation*}
$$

No solution in terms of elementary functions.

Phase plane analysis:

(1) Equivalent system $(y=\dot{x})$:

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{2}\\
\dot{y}=-\omega^{2} \sin x
\end{array}\right.
$$

(2) Implicit solution $=$ phase trajectory (here C is energy):

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=-\frac{\omega^{2} \sin x}{y} \Longrightarrow \frac{1}{2} y^{2}-\omega^{2} \cos x=C=\text { const. i.e. a curve for each } C \text {. }
$$

(3) Equilibrium points $\left(x_{e}, y_{e}\right)=$ constant solutions of (2):

$$
\Leftrightarrow\left(y_{e},-\omega^{2} \cos x_{e}\right)=(0,0) \Leftrightarrow\left(x_{e}, y_{e}\right)=(n \pi, 0), n \in \mathbb{Z}
$$

(c) Phase diagram: All phase trajectories (periodic in x, symmetric about $y=0$)

(3) Interpretation: Red $=$ rotations, green $=$ swinging back and forth.

Motivation: The pendulum

Stabililty:

A solution is stable if all solutions starting "near" remain "near" the solution for all times.

Stability for the pendulum:

Since solutions follow phase trajectories in the direction of the arrows, we see from the phase portrait that:
(1) The equilibrium points $(2 m \pi, 0)$ are stable.
(2) The equilibrium points $((2 m+1) \pi, 0)$ are unstable.
(3) The separatrices (blue curve) are unstable.
(9) For all other solutions more powerful methods are needed!

Due to small disturbances, physical systems tend over time to be (near) their stable equilibrium solutions (not neccesarily equilibrium points).

Linear 2×2 systems of ODEs

Initial value problem:

(1) $\left\{\begin{array}{l}\frac{d x_{1}}{d t}=a_{11} x_{1}+a_{12} x_{2} \\ \frac{d x_{2}}{d t}=a_{21} x_{1}+a_{22} x_{2},\end{array} \quad\right.$ or $\frac{d \vec{x}}{d t}=A \vec{x} \quad$ or $\quad \frac{d x}{d t}=A x$,

$$
\begin{equation*}
\vec{x}(0)=\vec{x}_{0} . \tag{2}
\end{equation*}
$$

where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=$ constant and $\vec{x}=x=\binom{x_{1}}{x_{2}}$.
Autonomous equation (does not depend on t) in normal form (like $\dot{x}=f(x, t)$).

Results:

(1) Theorem 1: There is only one solution of (1) and (2) for all $t \in \mathbb{R}$.
(2) Theorem 2: x_{1} and x_{2} solve (1) $\Rightarrow c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$ solve (1) for all $c_{1}, c_{2} \in \mathbb{R}$.
(3) Theorem 3: x_{1} and x_{2} solve (1) and are linear independent
\Rightarrow any solution of (1) can be written as $c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$ for some $c_{1}, c_{2} \in \mathbb{R}$.

In Tm. $3 x_{1}, x_{2}$ is a basis, and $\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$ a general solution of (1).

Solving equation (1)

$$
\frac{d \vec{x}}{d t}=A \vec{x} \quad \text { where } \quad A=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{1}\\
a_{21} & a_{22}
\end{array}\right]=\text { constant. }
$$

Idea: Find a basis of two independent solutions.
Test solution: $\vec{x}=\vec{v} e^{\lambda t}, \quad \vec{v} \neq \overrightarrow{0}$.
(1) Solves (2) iff $(A-\lambda I) \vec{v}=\overrightarrow{0} \quad \ldots \quad$ Eigenvalue problem.
(2) Non-zero solutions \vec{v} iff characteristic equation holds

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-p \lambda+q=0, \quad \text { where } \quad\left\{\begin{array}{l}
p=\operatorname{tr} A=a_{11}+a_{22} \\
q=\operatorname{det} A=a_{11} a_{22}-a_{12} a_{21}
\end{array}\right.
$$

(3) Hence always solutions $\left(\lambda_{1}, \vec{v}_{1}\right),\left(\lambda_{2}, \vec{v}_{2}\right)$, but complex solutions possible.

Solving linear 2×2 systems

(1) $\dot{x}=A x \quad$ or $\quad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x_{1}}{x_{2}}$

Test solution: $x=v e^{\lambda t}, v \neq 0$.
(1) Solves (1) iff $(A-\lambda I) v=0 \ldots$ Eigenvalue problem ... solutions iff:

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-p \lambda+q=0, \quad q=a_{11}+a_{22}, \quad q=a_{11} a_{22}-a_{12} a_{21}
$$

(2) Hence always solutions $\left(\lambda_{1}, v_{1}\right),\left(\lambda_{2}, v_{2}\right)$. All possible cases:
(1) $\lambda_{1} \neq \lambda_{2}$ real: $\quad v_{1}, v_{2} \in \mathbb{R}^{2}$ are linearly independent.
(2) $\lambda_{1}=\lambda_{2}$ real: $v_{1}, v_{2} \in \mathbb{R}^{2}$ may or may not be lin. independent.
(3) $\lambda_{1}=\bar{\lambda}_{2}$ complex: $v_{1}=\bar{v}_{2} \in \mathbb{C}^{2}$ are linearly independent.

General solution: $x=C_{1} x_{1}+C_{2} x_{2}, \quad C_{1}, C_{2} \in \mathbb{R}$, where

(1) λ_{1}, λ_{2} real, v_{1}, v_{2} lin. independent: | $x_{1}(t)=v_{1} e^{\lambda_{1} t}$ | $x_{2}(t)=v_{2} e^{\lambda_{2} t}$ |
| :--- | :--- |

(2) $\lambda_{1}=\lambda_{2}$ real, only one lin. indep. $v: x_{1}(t)=v e^{\lambda_{1} t}$ and

$$
x_{2}=(v t+u) e^{\lambda_{1} t} \quad \text { where } \quad\left(A-\lambda_{1} I\right) u=v
$$

(3) $\lambda_{1}=\bar{\lambda}_{2}=\alpha-i \beta$ complex: | $x_{1}(t)=\operatorname{Re}\left(v_{1} e^{\lambda_{1}}\right)$ | $x_{2}(t)=\operatorname{Im}\left(v_{1} e^{\lambda_{1}}\right)$ |
| :--- | :--- |

Linear 2×2 systems

$$
\dot{x}=A x \quad \text { or } \quad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
a_{11} & a_{12} \tag{1}\\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

(1) Thm: All solutions of (1) can be written in the form

$$
x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t),
$$

where x_{1} and x_{2} are defined as above in each case.
(2) Thm: All solutions of (1) are linear combinaitions of products of trigonometric, exponential, and plynomial functions.
© Thm: The initial value problem (1) and

$$
\begin{equation*}
x(0)=x_{0}, \tag{2}
\end{equation*}
$$

has a solution for all $x_{0} \in \mathbb{R}^{2}$ and all $t \in \mathbb{R}$.

Fundamental matrix and Stability

$$
\begin{align*}
& \dot{x}(t)=A x(t), \tag{1}\\
& x(0)=x_{0} . \tag{2}
\end{align*}
$$

where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is constant and $x \in \mathbb{R}^{2}$.

Concepts:

(1) Fundamental matrix: $\Phi(t)=\left[x_{1}(t), x_{2}(t)\right]$ where x_{1}, x_{2} basis for (1)
(2) Flow $\phi: x(t)=\phi\left(t ; x_{0}\right)$ solve (1) and (2).
(0) Lemma: $\phi\left(t ; x_{0}\right)=\Phi(t) \Phi(0)^{-1} x_{0}$.

Stability: Let $x(t)=\phi\left(t ; x_{0}\right)$.
(1) $x(t), t>0$, stable if for all $\varepsilon>0$ there is $\delta>0$ such that

$$
\left|x_{1}-x_{0}\right|<\delta \Rightarrow\left|\phi\left(t ; x_{1}, t_{0}\right)-\phi\left(t ; x_{0}, t_{0}\right)\right|<\varepsilon \quad \text { for all } t>0 .
$$

(2) $x(t), t>0$, asymptotic stable if stable and there is $\eta>0$ s.t.

$$
\left|x_{1}-x_{0}\right|<\eta \quad \Rightarrow \quad\left|\phi\left(t ; x_{1}, t_{0}\right)-\phi\left(t ; x_{0}, t_{0}\right)\right| \rightarrow 0 \text { as } t \rightarrow \infty .
$$

Obs: The definitions hold for general non-linear $n \times n$ systems!

Stability of solutions of linear systems

$$
\begin{align*}
& \dot{x}(t)=A x(t), \tag{1}\\
& x(0)=x_{0} . \tag{2}
\end{align*}
$$

where $A=\left[\begin{array}{lll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is constant and $x \in \mathbb{R}^{2}$.
Theorem 1: Let Φ be any fundamental matrix of (1).
(1) $\|\Phi(t)\| \leq M<\infty$ for all $t \geq 0 \quad \Rightarrow \quad$ all solutions of (1) are stable.
(2) $\lim _{t \rightarrow 0}\|\Phi(t)\|=0 \Rightarrow$ all solutions of (1) are asymptot. stable.
($\lim _{t \rightarrow 0}\|\Phi(t)\|=\infty \quad \Rightarrow$ all solutions of (1) are unstable.
Theorem 2: Let λ_{1}, λ_{2} be the eigenvalues of A.
(1) all solutions of (1) are stable $\Rightarrow \max _{i} \operatorname{Re}\left(\lambda_{i}\right) \leq 0$.
(c) max $\left.\operatorname{me}_{i} \operatorname{Re} \lambda_{i}\right) \leq 0$ and $\lambda_{1} \neq \lambda_{2} \quad \Rightarrow \quad$ all solutions of (1) are stable.
(3) $\max _{i} \operatorname{Re}\left(\lambda_{i}\right)<0 \Rightarrow$ all solutions of (1) are asymptot. stable.
(1) $\max _{i} \operatorname{Re}\left(\lambda_{i}\right) \geq 0 \Rightarrow$ all solutions of (1) are unstable.

Autonoumous linear 2×2 systems

$$
\dot{x}=A x ; \quad A=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{1}\\
a_{21} & a_{22}
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Equilibrium points:

- Constant solutions x_{e} of (1), i.e. solutions of $A x_{e}=0$.
- $\lambda_{1}, \lambda_{2} \in \mathbb{R}$: Node if $\lambda_{1} \lambda_{2}>0$, and saddle if $\lambda_{1} \lambda_{2}<0$.
- $\lambda_{1}=\bar{\lambda}_{2} \in \mathbb{C}$: Spiral if $\operatorname{Re} \lambda_{1} \neq 0$, and center if $\operatorname{Re} \lambda_{1}=0$.
- $\lambda_{1}=\lambda_{2}$ or either $\lambda_{1}=0$ or $\lambda_{2}=0$: Degenerate cases.

Phase diagrams/portraits:

(2) Phase trajectory through $x_{0}:\left\{x(t): t \in \mathbb{R}, x\right.$ solves $\left.(1), x(0)=x_{0}\right\}$ Tangent at $x: A x[=\dot{x}]$.
Direction: Direction of x as time increases $=$ tangent direction

- Direction in one pt. \rightarrow all directions by continuity of directions

Equation: $\frac{d x_{2}}{d x_{1}}=\frac{\dot{x}_{2}}{\dot{x}_{1}}=\frac{a_{21} x_{1}+a_{22} x_{2}}{a_{11} x_{1}+a_{12} x_{2}}$
Equilibrium point: Trajectory $=$ one point
(2) Phase plane/diagram: $x_{1} x_{2}$-plane/sketch of "all" phase trajectories.

Remark: One trajectory through every $x_{0} \in \mathbb{R}^{2}$; trajectories do not cross!

Scaling and symmetry for linear systems

Scaling: $s \in \mathbb{R}, \neq 0$
(3) Point x : $s x$
(2) Curve $C: s C=\{s x: x \in C\}$

Observe:

(3) $\dot{x}=A x \underset{y=s x}{\Leftrightarrow} \dot{y}=A y \quad$ (scale invariant)
(2) C part of trajectory through $x_{0} \Rightarrow s C$ part of trajectory through $s x_{0}$

Consequences:

(3) In any sector from 0 :
(3) One trajectory determines the whole diagram by scaling.
(3) Equal transit time for all trajectory-segments in sector (check it!)
(2) Phase diagram symmetric about 0 .
(3) No isolated closed cuves.

Read for yourself Jordan-Smith chp. 2.6

Linear non-autonoumous nxn systems

(1) $\left\{\begin{array}{l}\dot{x}=A(t) x+b(t), \\ x\left(t_{0}\right)=x_{0},\end{array} \quad A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right], b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right], x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]\right.$

We always assume: A, b continuous for all $t \in \mathbb{R}$.

Results and definitions:

(1) Non-homogeneous, non-autonomous equation in normal form.
(2) There exists a unique solution of (1) for all $x_{0} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$.
(3) Flow $\phi\left(t ; x_{0}, t_{0}\right)$: The solution of eq'n $(1)_{1}$ and initial data $(1)_{2}$.

Homogeneous equation $b \equiv 0$:
(3) Basis: n linearly independent solutions x_{1}, \ldots, x_{n} of $\dot{x}=A x$
(2) Fundamental matrix $\Phi \in \mathbb{R}^{n \times n}$, a for all $t \in \mathbb{R}$ invertible solution of

$$
\dot{\Phi}=A \Phi .
$$

(3)OBS: $\Phi=\left[x_{1}, \ldots, x_{n}\right]$ and $b \equiv 0 \Rightarrow \phi\left(t ; x_{0}, t_{0}\right)=\Phi(t) \Phi\left(t_{0}\right)^{-1} x_{0}$
(1) There always exists a fundamental matrix (and a basis) for (1).

Linear $n \times n$ systems

Non-autonomous equation $\dot{x}=A(t) x+b(t) ; \quad A \in \mathbb{R}^{n \times n}$.

$$
\begin{aligned}
& x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) x\left(t_{0}\right)+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) b(s) d s \quad \text { if } \Phi \text { fund. } \\
& \text { matrix. }
\end{aligned}
$$

Autonomous equation $\dot{x}=A x ; \quad A$ constant, eigenval's/-vec's λ_{i} / r_{i}.
(1) $x=r e^{\lambda t}$ solve (1) iff $(A-\lambda I) r=0$.

Basis when n lin. independent $r_{i}: x_{1}=r_{1} e^{\lambda_{1} t}, \ldots, x_{n}=r_{n} e^{\lambda_{n} t}$.
(2) Basis in general: There are polynomial p_{i} (order $\leq n$) such that

$$
x_{1}(t)=p_{1}(t) e^{\lambda_{1} t}, \ldots, x_{n}(t)=p_{n}(t) e^{\lambda_{n} t}
$$

(3) Real basis: $\operatorname{Re} x_{i}, \operatorname{Im} x_{i}, i=1, \ldots, n$ (give n lin. indep. solutions).

Jordan form and exponential

Jordan form: $A \in \mathbb{C}^{n \times n}$
(1) Eigenvalues/-vectors λ_{i} / r_{i}.
(2) Complex diagonalization: When n lin. independent r_{i} 's,

$$
A=P \wedge P^{-1} \quad \text { where } \quad \Lambda=\operatorname{diag}\left(\lambda_{i}\right) \in \mathbb{C}^{n \times n}, \quad P=\left[r_{1} \ldots r_{n}\right] .
$$

(0) Jordan form: For any real matrix A ! There is a P s.t.

$$
A=P^{-1} J P \quad \text { where } \quad J=\operatorname{diag}\left(B_{1}, \ldots, B_{m}\right) \in \mathbb{R}^{n \times n},
$$

$B_{i}=\lambda_{i}, \quad\left(\begin{array}{cc}\operatorname{Re} \lambda_{i} & \operatorname{Im} \lambda_{i} \\ -\operatorname{Im} \lambda_{i} & \operatorname{Re} \lambda_{i}\end{array}\right)=: D_{i},\left[\begin{array}{cccc}\lambda_{i} & 1 & & 0 \\ & \ddots & \ddots_{1} & \\ 0 & & \lambda_{i} & 1 \\ 0 & & \lambda_{i}\end{array}\right]$, or $\left[\begin{array}{cccc}D_{i} & 1 & & 0 \\ & \ddots & \ddots & \\ 0 & & D_{i} & 1 \\ 0 & & D_{i}\end{array}\right]$.
Matrix exponential: $A \in \mathbb{C}^{n \times n}$
(1) $e^{A}:=\lim _{n \rightarrow \infty}\left(I+A+\frac{1}{2} A^{2}+\cdots+\frac{1}{n!} A^{n}\right)$.
(2) $\left\|e^{A}\right\| \leq e^{\|A\|}$ and the e^{A} is well-defined.

- $\Phi(t)=e^{t A}$ solve the following initial value problem

$$
\dot{\phi}=A \Phi \quad \text { and } \quad \Phi(0)=I .
$$

Matrix exponential and stability

$$
\begin{equation*}
\dot{x}=A(t) x+b(t) ; \quad A \in \mathbb{R}^{n \times n} ; b, x \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

Matrix exponential:
(1) $A=P J P^{-1} \Rightarrow e^{A}=P e^{J} P^{-1}$
(c) $e^{t A}$ fundamental matrix; the solution of (1) when $A=$ konst is

$$
x(t)=e^{\left(t-t_{0}\right) A} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{(t-s) A} b(s) d s
$$

Stability:

(1) Theorem: Φ fundamental matrix, $\dot{\Phi}=A(t) \Phi$.
(a) Φ bounded, $t \geq t_{0} \Rightarrow$ all solutions of (1) stable
(b) $\Phi \rightarrow 0$ as $t \rightarrow \infty \Rightarrow$ all solutions of (1) asympt. stable
(c) Φ unbounded, $t \geq t_{0} \Rightarrow$ all solutions of (1) unstable
(c) Theorem: $A=$ konst, eigenvalues λ_{j}.
(a) $\max _{i} \operatorname{Re} \lambda_{i} \leq 0$ and $\lambda_{i} \neq \lambda_{j} \Rightarrow$ all solutions of (1) stable
(b) $\max _{i} \operatorname{Re} \lambda_{i}<0 \Rightarrow$ all solutions of (1) asympt. stable
(c) $\max _{i} \operatorname{Re} \lambda_{i}>0 \Rightarrow$ all solutions of (1) unstable

Stability when A is non-constant

(1)

$$
\dot{x}=A(t) x+b(t) ; \quad A \in \mathbb{R}^{n \times n} ; b, x \in \mathbb{R}^{n} .
$$

(1) Assume: $A(t)=B+C(t)$ where B constant, $\int_{t_{0}}^{\infty}\|C(s)\| d s<\infty$.
(2) Theorem: Φ fundamental matrix, $\dot{\Phi}=B \Phi$.
(a) Φ bounded, $t \geq t_{0} \Rightarrow$ all solutions of (1) stable
(b) $\Phi \rightarrow 0$ as $t \rightarrow \infty \Rightarrow$ all solutions of (1) asympt. stable
(3) Theorem: B has eigenvalues λ_{i}.
(a) $\max _{i} \operatorname{Re} \lambda_{i} \leq 0$ and $\lambda_{i} \neq \lambda_{j} \Rightarrow$ all solutions of (1) stable
(b) $\max _{i} \operatorname{Re} \lambda_{i}<0 \Rightarrow$ all solutions of (1) asympt. stable

Lipschitz condition

Definitions: Let $f=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{R}^{n}$.
(1) $f(x)$ is Lipschitz in a set $\Omega \subset \mathbb{R}^{n}$ if there is $L>0$ such that

$$
|f(x)-f(y)| \leq L|x-y| \quad \text { for all } \quad x, y \in \Omega
$$

(c) $f(x, t)$ is x-Lipschitz in a set $R \subset \mathbb{R}^{n+1}$ if there is $L>0$ such that

$$
|f(x, t)-f(y, t)| \leq L|x-y| \quad \text { for all } \quad(x, t),(y, t) \in R .
$$

(0) $f(x, t)$ is locally Lipschitz on Ω if they are Lipschitz on each closed bounded subset $K \subset \Omega$ (or - on each closed bounded ball $\bar{B} \subset \Omega$).
(0) Locally x-Lipschitz defined similarly.
((ipschitz constant: The smallest L in the above inequalities.

- $\left[\sqrt{x_{1}^{2}+x_{3}^{2}}, 5, \frac{x_{1}^{2}}{1+x_{1}^{2}+x_{3}^{2}}\right]$ Lip. in $\mathbb{R}^{3} ; \quad x^{2}$ only loc. Lip. $/ \sqrt{x}$ not in \mathbb{R}

Lipschitz condition

(1) $f(x, t)$ is x-Lipschitz in a set $R \subset \mathbb{R}^{n+1}$ if there is $L>0$ such that

$$
|f(x, t)-f(y, t)| \leq L|x-y| \quad \text { for all } \quad(x, t),(y, t) \in R .
$$

(2) $f(x)$ is locally x-Lipschitz in R if it is x-Lipschitz on each closed bounded subset $K \subset \Omega$ (or - on each closed ball $\bar{B} \subset \Omega$).
(3) Jacobi matrix: $D f(x, t)=\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right]$.
(- f is C^{1} in bounded, convex $R \Rightarrow f$ is x-Lip. in R and $L \leq \max _{R}\|D f\|$.

Uniqueness and continuous dependence

$$
\begin{align*}
& \dot{x}(t)=f(x(t), t), \tag{1}\\
& x\left(t_{0}\right)=x_{0} .
\end{align*}
$$

Uniqueness:
If f is continuous and locally x-Lipschitz in a domain R, then there are not more than one solution of (1) and (2) in R.

Continuous dependence on initial data:
Assume
(1) f is continuous and x-Lipschitz in a domain R,
(2) x, y solutions of (1) for $t \in\left(t_{0}, b\right)$,
(3) $(x(t), t),(y(t), t) \subset R$ for $t \in\left[t_{0}, b\right)$,
(0) $\lim _{t \rightarrow t_{0}} x(t)=x_{0}$ and $\lim _{t \rightarrow t_{0}} y(t)=y_{0}$.

Then

$$
|x(t)-y(t)| \leq e^{L\left(t-t_{0}\right)}\left|x_{0}-y_{0}\right| \quad \text { for } \quad t \in\left[t_{0}, b\right)
$$

Remark: $x(t)=\phi\left(t ; x_{0}\right)$ is continuous in x_{0}.

Continuous dependence on data

Theorem:

Assume
(1) $\dot{x}=f(x, t)$ and $\dot{y}=g(y, t)$ for $t \in\left(t_{0}, b\right)$,
(2) $(x(t), t),(y(t), t) \subset R$ for $t \in\left[t_{0}, b\right)$ (R domain),
(3) f, g is continuous and $f x$-Lipschitz in R,
(2) $|f(x, t)-g(x, t)| \leq \varepsilon(\varepsilon>0)$ for all $(x, t) \in R$,
(3) $\lim _{t \rightarrow t_{0}} x(t)=x_{0}$ and $\lim _{t \rightarrow t_{0}} y(t)=y_{0}$.

Then

$$
|x(t)-y(t)| \leq e^{2 L\left(t-t_{0}\right)}\left|x_{0}-y_{0}\right|+\frac{\varepsilon}{L} \sqrt{e^{2 L\left(t-t_{0}\right)}-1}, \quad t \in\left[t_{0}, b\right)
$$

where L is the Lipschitz constant of f, i.e. $L \leq \max _{R}\|D f(x, t)\|$.
Remark: The solution $x(t)=\phi\left(t ; x_{0}, t_{0}, f\right)$ of

$$
\dot{x}=f(x, t) \quad \text { and } \quad x\left(t_{0}\right)=x_{0}
$$

is continuous in x_{0} and f (and $t_{0}!$).

Existence of solutions:

$$
\begin{align*}
& \dot{x}(t)=f(x(t), t), \tag{1}\\
& x\left(t_{0}\right)=x_{0} . \tag{2}
\end{align*}
$$

Theorem 1: ("Global" existence)
If f is continuous and x-Lipschitz for $x \in \mathbb{R}^{n}$ and $\left|t-t_{0}\right| \leq T$, then there exists a solution of (1) and (2) for $\left|t-t_{0}\right| \leq T$.

Theorem 2: (Local existence 1 - Piccard-Lindelöf)
If f is continuous $+x$-Lipschitz for $\left|x-x_{0}\right| \leq K,\left|t-t_{0}\right| \leq T$, then there exists a sol'n of (1) $+(2)$ for $\left|t-t_{0}\right| \leq \min \left(T, \frac{K}{M}\right), M \underset{\substack{\left|t=t_{0}\right| \leq T \\\left|x-x_{0}\right| \leq K}}{ }|f(x, t)|$

Theorem 3: (Local existence 2 - Peano)
If f is continuous for $\left|x-x_{0}\right| \leq K$ and $\left|t-t_{0}\right| \leq T$, then there exists a solution of (1) and (2) for $\left|t-t_{0}\right| \leq \min \left(T, \frac{K}{M}\right)$ where M as in Thm. 2.

Remark: In Thm's 1 and 2, the solution is unique - but not in Thm 3!

Existence interval and C^{1} dependence on x_{0}.

$$
\begin{align*}
& \dot{x}(t)=f(x(t), t), \tag{1}\\
& x\left(t_{0}\right)=x_{0} . \tag{2}
\end{align*}
$$

Theorem 1: f continuous and x-Lipschitz on domain $R \ni\left(x_{0}, t_{0}\right)$.
(a) There exists a unique solution of (1) and (2) on a maximal existence interval $\left(t_{0}-a, t_{0}+b\right)$ for some $a, b>0$.
(b) If $b<\infty$, then either $(x(t), t) \rightarrow \partial R$ or $|x(t)| \rightarrow \infty$ as $t \rightarrow b^{-}$.

Remark:

(1) 3 possibilities: $b=\infty$, or x blows up in finite time, or $(x(t), t)$ leaves in finite time the region R of well-posedness.
(2) $b=$ existence/life time of the solution of (1) and (2).

Theorem 2: $f \in C^{1}$ and $\phi\left(t ; x_{0}\right)$ (unique) solution of (1) and (2).
Then ϕ is C^{1} in x_{0} (and t), and $w=\frac{\partial \phi}{\partial x_{j}}$ is the unique solution of

$$
w_{t}=D f\left(\phi\left(t ; x_{0}\right), t\right) w, \quad w(0)=e_{j} .
$$

Phasediagram for autonomous systems

$$
\begin{align*}
& \dot{x}=f(x), \quad f \in R^{n} \text { independent of } t \tag{1}\\
& x\left(t_{0}\right)=x_{0} . \tag{2}
\end{align*}
$$

(1) Phase trajectory through $x_{0}:\left\{x(t): t \in \mathbb{R}, x\right.$ solves $\left.(1), x(0)=x_{0}\right\}$ Tangent (direction) at $x: f(x)[=\dot{x}]$.

- f continuous \Rightarrow continuity of directions

Equation: $\frac{d x_{2}}{d x_{1}}=\frac{\dot{x}_{2}}{\dot{x}_{1}}=\frac{f_{2}(x)}{f_{1}(x)}, \ldots, \frac{d x_{n}}{d x_{1}}=\frac{\dot{x}_{n}}{\dot{x}_{1}}=\frac{f_{n}(x)}{f_{1}(x)}$
Equilibrium point $x_{e}: f\left(x_{e}\right)=0$, and trajectory $=$ one point
(2) Phase diagram: Sketch of "all" phase trajectories.
(3) Well-posedness for (1) and (2) for all x_{0}, t
\Rightarrow trajectories exist + do not cross + pass through every $x_{0} \in \mathbb{R}^{n}$.
(0) Separatrix: Trajectory separating regions w. different sol'n behaviour
((Only in non-linear systems: Many isolated equilibrium points, limit cycles, separatix cycles, and chaos (in $\mathbb{R}^{n}, n \geq 3$).

Linearization

$$
\begin{equation*}
\dot{x}=f(x) \tag{1}
\end{equation*}
$$

Linearized about equi. pt. $x_{0}: f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+\ldots$

$$
\begin{equation*}
\dot{y}=D f\left(x_{0}\right) y \quad\left(x-x_{0}=y\right) \tag{2}
\end{equation*}
$$

(1) Near $x_{0}, f\left(x_{0}\right) \neq 0$: Phase diagram \approx straigth lines (if $f \in C^{1}$).
(2) Near $x_{0}, f\left(x_{0}\right)=0$ and hyperbolic: Re $\lambda_{i} \neq 0$ for eig.val's of $\operatorname{Df}\left(x_{0}\right)$
(1) Phasediagram (1) looks like phasediagram (2) near $y=0$
(2) (1) and (2) has same types of equilibrium points in x_{0} and $y=0$ (including asymptotic lines etc.)
(3) Justification: Hartman-Grobman + Hartman thm's (need $f \in C^{2}$!).
(3)Near $x_{0}, f\left(x_{0}\right)=0$ and non-hyperbolic:

No information from linearization - need higher order theory.

Linearization

$$
\begin{equation*}
\dot{x}=f(x) \tag{1}
\end{equation*}
$$

Linearized about equi. pt. $x_{0}: f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+\ldots$

$$
\begin{equation*}
\dot{y}=D f\left(x_{0}\right) y \quad\left(x-x_{0}=y\right) \tag{2}
\end{equation*}
$$

(1) Near $x_{0}, f\left(x_{0}\right) \neq 0$: Phase diagram \approx straigth lines (if $f \in C^{1}$).
(2) Near $x_{0}, f\left(x_{0}\right)=0$ and hyperbolic: Re $\lambda_{i} \neq 0$ for eig.val's of $\operatorname{Df}\left(x_{0}\right)$
(1) Phasediagram (1) looks like phasediagram (2) near $y=0$
(2) (1) and (2) has same types of equilibrium points in x_{0} and $y=0$ (including asymptotic lines etc.)
(3) Justification: Hartman-Grobman + Hartman thm's (need $f \in C^{2}$!).
(3)Near $x_{0}, f\left(x_{0}\right)=0$ and non-hyperbolic:

No information from linearization - need higher order theory.

Reminder: Stability

(2)

$$
\begin{align*}
\dot{x}(t) & =f(x(t), t), \tag{1}\\
x\left(t_{0}\right) & =x_{0} .
\end{align*}
$$

Flow $\phi: x(t)=\phi\left(t ; x_{0}, t_{0}\right)$ solution of (1) and (2).
Stability: Let $x(t)=\phi\left(t ; x_{0}, t_{0}\right)$.
(1) $x(t)$ stable for $t \geq t_{0}$ if for all $\varepsilon>0$ there is $\delta>0$ such that

$$
\left|x_{1}-x_{0}\right|<\delta \Rightarrow\left|\phi\left(t ; x_{1}, t_{0}\right)-\phi\left(t ; x_{0}, t_{0}\right)\right|<\varepsilon \quad \text { for all } t>t_{0} .
$$

(2) $x(t)$ asymptotic stable for $t \geq t_{0}$ if stable and there is $\eta>0$ s.t.

$$
\left|x_{1}-x_{0}\right|<\eta \Rightarrow\left|\phi\left(t ; x_{1}, t_{0}\right)-\phi\left(t ; x_{0}, t_{0}\right)\right| \rightarrow 0 \text { as } t \rightarrow \infty .
$$

Stability of equilibrium points

Nearly linear systems:

$$
\begin{equation*}
\dot{x}=A x+h(x, t) ; \quad A \in \mathbb{R}^{n \times n}, \quad x, h \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Theorem 1:
Assume λ_{i} eigenvalues of $A, h \in C^{1}$, and

$$
|h(x, t)|=o(|x|) \quad \text { as } \quad x \rightarrow 0 \quad \text { uniformly in } t
$$

$\max _{i} \operatorname{Re} \lambda_{i}<0 \Rightarrow 0$ is an asympt. stable equilibrium pt. of (1).

Autonomous systems: Linearization

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

Theorem 2:
Assume $f \in C^{1}, f\left(x_{0}\right)=0$, and λ_{i} eigenvalues of $\operatorname{Df}\left(x_{0}\right)$.
(a) $\max _{i} \operatorname{Re} \lambda_{i}<0 \Rightarrow x_{0}$ is an asympt. stable equilibrium pt. of (2)
(b) $\max _{i} \operatorname{Re} \lambda_{i}>0 \Rightarrow x_{0}$ is an unstable equilibrium pt. of (2)
(c) $\max _{i} \operatorname{Re} \lambda_{i}=0 \Rightarrow$ NO CONCLUSION!!

OBS: Stability based on $D f=$ stability by linearization $\dot{y}=D f\left(x_{0}\right) y$

Liapunov's direct method

- More general method than linearization.
- Need to construct (find) a Liapunov function.

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

$V(x)$ is a strong Liapunov function for (2) in domain $B \ni 0$ if
(1) $V \in C^{1}(B)$,
(2) $V(0)=0$ and $V(x)>0$ for $x \in B \backslash\{0\}$,
(3) $\dot{V}(0)=0$ and $\dot{V}(x)<0$ for $x \in B \backslash\{0\}$, where

$$
\dot{V}(x)=\frac{d}{d t} V(x(t))=\nabla V(x) \cdot \dot{x}=\nabla V(x) \cdot f(x) .
$$

Theorem 2: Assume $f(0)=0$ and f Lipschitz in some domain $B \ni 0$.
If $V(x)$ is a strong Liapunov function for (2) in B, then $x=0$ is an asymptotically stable equilibrium point for (2).

Liapunov's direct method

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

Weak (strong) Liapunov function $V(x)$ for (1) in domain $B \ni 0$:
(1) $V \in C^{1}(B)$,
(2) $V(0)=0$ and $V(x)>0$ for $x \in B \backslash\{0\}$,

- $\dot{V}(0)=0$ and $\dot{V}(x) \leq 0(V(x)<0)$ for $x \in B \backslash\{0\}$, where
(1) $\dot{V}(x)=\frac{d}{d t} V(x(t))=\nabla V(x) \cdot \dot{x}=\nabla V(x) \cdot f(x)$.

Candidates:

$V(x)=\sum_{i} c_{i} x_{i}^{2}$, or $V(x)=x^{T} A x$ for $A=A^{T}$ positive definite, or $V=$ energy/Hamiltonian etc.

Theorem: Assume $f(0)=0$ and f Lipschitz in some domain $B \ni 0$.
(a) If $V(x)$ is a weak Liapunov function for (1) in B, then $x=0$ is an stable equilibrium point for (1).
(b) If $V(x)$ is a strong Liapunov function for (1) in B, then $x=0$ is an asymptotically stable equilibrium point for (1).

Liapunov methods for autonomous systems

$$
\begin{equation*}
\dot{x}=f(x) ; \quad f, x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Definitions:
(1) $\dot{V}(x)=\frac{d}{d t} V(x(t))=\nabla V(x) \cdot f(x)$
(2) $V(x)$ weak (strong) Liapunov function of (1) in domain $B \ni 0$ if

- $\operatorname{l} V \in C^{1}(B)$,
(2) $V(0)=0$ and $V(x)>0$ for $x \neq 0$
- $\dot{V}(0)=0$ and $\dot{V}(x) \leq 0(\dot{V}(x)<0)$ for $x \neq 0$

Theorem: Assume $f(0)=0$ and f Lipschitz in a domain $B \ni 0$.
(1) $V(x)$ weak Lipunov function for $(1) \Rightarrow x(t) \equiv 0$ is stable
(c) $V(x)$ strong Lipunov function for $(1) \Rightarrow x(t) \equiv 0$ is asympt. stable
(0) $U(x)$ satisfy $1-3$ below $\Rightarrow x(t) \equiv 0$ is unstable
(-) $U \in C^{1}(B)$,
(c) $U(0)=0$; for any $\delta>0$, there is $x \in B$ s.t. $|x|<\delta$ and $U(x)>0$,

- there is $\eta>0$ such that $\dot{U}(x)>0$ for all x s.t. $|x|<\eta$ and $U(x)>0$

Examples: $V=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$, $=$ energy/Hamiltonian; $U=x_{1} x_{2},=x_{1}^{2}-x_{2}^{2}$

Invariant domains and domains of attraction

(1)

$$
\dot{x}=f(x) ; \quad f, x \in \mathbb{R}^{n}
$$

(1) Flow: $\phi\left(t ; x_{0}\right)$ solution of (1) and $x(0)=x_{0}$.
(2) $\Omega \subset \mathbb{R}$ invariant (positive invariant) under (1) if $\phi\left(t ; x_{0}\right) \in \Omega$ for all $t \in \mathbb{R}(t \geq 0)$ and $x_{0} \in \Omega$.
$\Omega_{a}=\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} \phi(t ; x)=x_{0}\right\}$ domain of attraction of x_{0}.
(3) Lemma: $\Omega=\{x: V(x) \leq c\}$ is positive invariant if $f, V \in C^{1}$ and

$$
\nabla V(x) \neq 0 \quad \text { and } \quad \dot{V}(x)=\nabla V(x) \cdot f(x) \leq 0 \quad \text { on } \quad V(x)=c
$$

(4) Lasalle's invariance principle. Assume:
(1) $f(0)=0$ and f Lipschitz in $\Omega \ni 0$,
(2) Ω positive invariant, closed and bounded,
(3) $V(x)$ is a weak Liapunov function on Ω,
(9) there is no global in time solution of (1) such that

$$
x(t) \in \Omega \backslash\{0\} \quad \text { and } \quad V(x(t))=\text { constant } \quad \text { for all } \quad t \in \mathbb{R}
$$

Then $x=0$ is asymptotically stable and $\Omega \subset \Omega_{a}$ (attraction).

Hamiltonian 2×2 systems

(1)

$$
\dot{x}=f(x) ; \quad x=\left(x_{1}, x_{2}\right), \quad f=\left(f_{1}, f_{2}\right) .
$$

Definition: (1) Hamiltonian if there is a Hamilton function $H(x) \in C^{2}$ s.t.

$$
f_{1}=\frac{\partial H}{\partial x_{2}} \quad \text { and } \quad f_{2}=-\frac{\partial H}{\partial x_{1}} .
$$

(1) (1) Hamiltonian $\Leftrightarrow \nabla \cdot f=0$ (f divergence free)
(2) H Hamilton function, $x(t)$ solution of $(1) \Rightarrow H(x(t))=$ constant
(3. Equilibrium points of $(1)=$ critical points of $H(\nabla H=0)$
(1) Classification of equilibrium point x_{0} via 2 nd derivative test for H :

$$
\begin{aligned}
& q\left(x_{0}\right)>0 \text { center, } q\left(x_{0}\right)<0 \text { saddle, } q\left(x_{0}\right)=0 \text { no conclusion, } \\
& \text { where } q=\operatorname{det} D^{2} H=H_{x_{1} x_{1}} H_{x_{2} x_{2}}-H_{x_{1} x_{2}} H_{x_{2} x_{1}}=\lambda_{1}\left(D^{2} H\right) \lambda_{2}\left(D^{2} H\right) .
\end{aligned}
$$

OBS: Similar results hold for $2 n \times 2 n$ systems: $f_{1}=\nabla_{\chi_{2}} H, f_{2}=-\nabla_{\chi_{1}} H$

Index theory for 2×2 systems

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{2} . \tag{1}
\end{equation*}
$$

(1) Polar angle of $f: \phi=\arctan \frac{f_{2}}{f_{1}}$
(2) Curve Γ : Simple, closed, p.w. C^{1}, oriented counter cl.wise, $\left.f\right|_{\Gamma} \neq 0$
(3) Index of $\Gamma: I_{\Gamma}=\frac{1}{2 \pi} \oint_{\Gamma} d \phi$
(1) 「 $=\left\{y(s): s_{0} \leq s \leq s_{T}\right\}$:

- $I_{\ulcorner }=\frac{1}{2 \pi} \int_{s_{0}}^{s T} \frac{f_{1} \frac{d}{d s} f_{2}-f_{2} \frac{d}{d s} f_{1}}{f_{1}^{2}+f_{2}^{2}} d s ; f_{i}(s)=f_{i}(y(s))$,
- $I_{\Gamma}=\frac{1}{2 \pi} \int_{y\left(s_{0}\right)}^{y\left(s_{T}\right)} \nabla \phi \cdot d y=\frac{\phi\left(y\left(s_{T}\right)\right)-\phi\left(y\left(s_{0}\right)\right)}{2 \pi} \in \mathbb{Z}$ since $f\left(s_{0}\right)=f\left(s_{T}\right)$
(-) Winding number of $\Gamma_{f}=\{f(x): x \in \Gamma\}: \frac{1}{2 \pi} \int_{\Gamma_{f}} \frac{X_{1} d X_{2}-X_{2} d X_{1}}{X_{1}^{2}+X_{2}^{2}}=I_{\Gamma}$.
$I_{\Gamma}=\frac{1}{2}(p+q)$ where
$p=$ number of times $f(x)$ is parallel with any given axis and crosses it counter clockwisely as x traverses Γ counter clockwisely
$q=$ number of times f cross the same axis clockwisely on Γ.

Index theory for 2×2 systems

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x=\left(x_{1}, x_{2}\right), f=\left(f_{1}, f_{2}\right) . \tag{1}
\end{equation*}
$$

Definition:

(1) Index of curve $\Gamma: I_{\Gamma}=\frac{1}{2 \pi} \oint_{\Gamma} d \phi$
(2) Index of equilibrium point x_{e} :
$I_{x_{e}}=I_{\Gamma}$ for any Γ encircling x_{e} but no other equilibrium point of (1).

Remarks:

(1) $\phi=\arctan \frac{f_{2}}{f_{1}}$ polar angle of f.
(2) 「: Simple, closed, p.w. C^{1} curve oriented counter cl.wise, $\left.f\right|_{\Gamma} \neq 0$.
(3) Saddle: $I=-1$; node, spiral, center, closed phase trajectory: $I=1$
((There are equilibrium points with $I=n$ for any $n \in \mathbb{Z}$.
Theorem: Assume f is C^{2} and $f=0$ in Ω only at x_{1}, \ldots, x_{n}. Then

$$
I_{\Gamma}=I_{x_{1}}+I_{x_{2}}+\cdots+I_{x_{n}}
$$

for any curve Γ in Ω encircling x_{1}, \ldots, x_{n}.

Closed trajectories and Poincare sequences

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{2} . \tag{1}
\end{equation*}
$$

Closed trajectories
(1) Closed phase trajectories \Leftrightarrow periodic solutions (autonomous syst.)
(2) Limit cycles: Isolated closed phase trajectories.
(3) Index test: Closed curve Γ surround equilibrium points x_{i}, index l_{i} :

$$
\sum I_{i} \neq 1 \Rightarrow \Gamma \text { is not a phase trajectory. }
$$

(1) Dulac's test: Ω open, simply connected; $\rho, f=\left(f_{1}, f_{2}\right) \in C^{1}(\Omega)$:

$$
\nabla \cdot(\rho f)<0 \text { in } \Omega(\text { or }>0) \Rightarrow \text { no closed phase trajectory in } \Omega \text {. }
$$

- $\rho \equiv 1 \rightarrow$ Bendixon's negative criterion

Poincare sequences:

(1) Poincare cross section Σ : curve transversal (=non-parallel) to f
(2) Poincare map P_{Σ} of $x_{0} \in \Sigma$: Point of first return of flow $\phi\left(t ; x_{0}\right)$ to Σ
(3) Poincare sequence: $x_{0}, P_{\Sigma}\left(x_{0}\right), \ldots, P_{\Sigma}^{n}\left(x_{0}\right), \ldots\left(P^{n}=P \circ P \circ \ldots \circ P\right)$

Poincare Bendixon's theorem

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{2} . \tag{1}
\end{equation*}
$$

(1) $\Gamma_{x_{0}}^{ \pm}=\left\{\phi\left(t, x_{0}\right): t \in[0, \pm \infty)\right\} \quad\left(\Gamma_{x_{0}}=\Gamma_{x_{0}}^{+} \cup \Gamma_{x_{0}}^{-}\right.$trajectory; ϕ flow)
(0) $\Omega \subset \mathbb{R}^{2}$ positive invariant under (1): $\Gamma_{x_{0}}^{+} \subset \Omega$ for all $x_{0} \in \Omega$.
(3) ω-limit set of $\Gamma_{x_{0}}$: All z s.t. $x\left(t_{n}\right)=\phi\left(t_{n} ; x_{0}\right) \underset{t_{n} \rightarrow \infty}{\rightarrow} z$ for some $\left\{t_{n}\right\}_{n}$.
(1) Cycle: A periodic trajectory but no equi. point (limit or center c.).

Theorem (Poincare-Bendixson):
$\Gamma^{+} \subset$ closed bounded K; no equilibrium points in $\omega_{\Gamma} \Rightarrow \omega_{\Gamma}$ is a cycle.
Lemma 1: $\Gamma^{+} \subset K, K$ closed, bounded (=compact)
$\Rightarrow \omega_{\Gamma} \subset K, \neq \emptyset$, closed, bounded, connected, invariant under (1).
Lemma 2: Assume L transversal line segment ($L \backslash \backslash f$)
(1) 「 crosses L in two different points $\Leftrightarrow \Gamma$ is not closed.
(2) Crossing points of Γ and L are ordered the same way along L as along Γ.

Corollary: $\quad x_{0} \in \omega_{\Gamma} \cap \Gamma \Leftrightarrow \Gamma$ closed trajectory.

Application of Poincare Bendixon's theorem

$$
\begin{equation*}
\dot{x}=f(x) ; \quad x, f \in \mathbb{R}^{2} . \tag{1}
\end{equation*}
$$

Theorem (Poincare-Bendixson):
$\Gamma^{+} \subset$ closed bounded K; no equilibrium points in $\omega_{\Gamma} \Rightarrow \omega_{\Gamma}$ is a cycle.
Cycle: A periodic trajectory but not equilibrium point (limit or center c.) Corresponds to a periodic solution.

Corollary 1: $K \subset \mathbb{R}^{2}$ closed, bounded, pos. invariant, with no equi. pt's \Rightarrow at least one cycle in K.

Lemma: $\Omega=\{x: V(x) \leq c\}$ is positive invariant if $f, V \in C^{1}$ and

$$
\nabla V(x) \neq 0 \quad \text { and } \quad \dot{V}(x)=\nabla V(x) \cdot f(x) \leq 0 \quad \text { on } \quad V(x)=c
$$

Corollary 2: There is at least one cycle in $K=\left\{x: c_{1} \leq V(x) \leq c_{2}\right\}$ if
(1) K is bounded and contains no equilibrium points,
(2) $\nabla V \neq 0$ and $\dot{V}=\nabla V \cdot f \geq 0$ on $V(x)=c_{1}$,
(3) $\nabla V \neq 0$ and $\dot{V}=\nabla V \cdot f \leq 0$ on $V(x)=c_{2}$.

The Lienard equation

(2) $\ddot{x}+f(x, \dot{x}) \dot{x}+g(x)=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}\dot{x}_{1}=x_{2} \\ \dot{x}_{2}=-f\left(x_{1}, x_{2}\right) x_{2}-g\left(x_{1}\right)\end{array}\right.$

Obs:
(3) Energy: $E\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+G\left(x_{1}\right)$, where $G(x)=\int_{0}^{x} g(s) d s$.
(2) $\frac{d}{d t} E(x(t))=\nabla E(x) \cdot \dot{x}=-f\left(x_{1}, x_{2}\right) x_{2}^{2} \leq 0(\geq 0)$ if $f \geq 0(f \leq 0)$

Theorem (cycles): Equation (2) has at least one cycle if
(a) $f\left(x_{1}, x_{2}\right)$ continuous, $f<0$ for $|x|<r, f>0$ for $|x|>R$,
(b) $g\left(x_{1}\right)$ continuous, $g<0$ for $x_{1}<0, g>0$ for $x_{1}>0$,
(c) $G\left(x_{1}\right)=\int_{0}^{x_{1}} g(s) d s \rightarrow \infty$ as $\left|x_{1}\right| \rightarrow \infty$.

Idea: $x=0$ only equilibrium point, $E(x)=c_{1}$ and $E(x)=c_{2}$ bounds bounded invariant region for c_{1} small and c_{2} big, use Poincare-Bendixon.

The Lienard equation

$$
\ddot{x}+f(x, \dot{x}) \dot{x}+g(x)=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{1}\\
\dot{x}_{2}=-f\left(x_{1}, x_{2}\right) x_{2}-g\left(x_{1}\right)
\end{array}\right.
$$

Energy: $E=\frac{1}{2} x_{2}^{2}+\int_{0}^{x} g(s) d s ; \quad \dot{E}=-f\left(x_{1}, x_{2}\right) x_{2}^{2}$.
Theorem (cycle): Equation (1) has at least one cycle if
(a) $f\left(x_{1}, x_{2}\right)$ continuous, $f<0$ for $|x|<r, f>0$ for $|x|>R$,
(b) $g\left(x_{1}\right)$ continuous, $g<0$ for $x_{1}<0, g>0$ for $x_{1}>0$,
(c) $G\left(x_{1}\right)=\int_{0}^{x_{1}} g(s) d s \rightarrow \infty$ as $\left|x_{1}\right| \rightarrow \infty$.

Theorem (centre): Equation (1) has a centre at $x=0$ if for $|x|<R$:
(a) $f=f\left(x_{1}\right)$ continuous, odd, one sign for $x_{1}<0$,
(b) $g\left(x_{1}\right)$ continuous, odd, $g>0$ for $x_{1}>0$,
(c) $g\left(x_{1}\right)>\alpha f\left(x_{1}\right) \int_{0}^{x_{1}} f(s) d s$ for $\alpha>1$.

Obs: Orbits loose energy in $\left\{x_{1} \geq 0\right\}$ but gain same amount in $\left\{x_{1}<0\right\}$.
Theorem (limit cycle): Equation (1) has one and only one cycle if
(a) $F(x)=\int_{0}^{x} f(s) d s, g$ locally Lipschitz,
(b) g odd, $g>0$ for $x>0$,
(c) F odd, $=0$ only at $x=0, \pm a, F \underset{x \rightarrow \infty}{\rightarrow} \infty$, monotonically for $x>a$.

Obs: The proof uses the Lienard plane: $\dot{x}_{1}=x_{2}-F\left(x_{1}\right), \dot{x}_{2}=-g\left(x_{1}\right)$

