
Motivation: The pendulum

Pendulum equation:

ẍ + ω2 sin x = 0.(1)

No solution in terms of elementary functions.

Phase plane analysis:
1 Equivalent system (y = ẋ): {

ẋ = y ,
ẏ = −ω2 sin x .

(2)

2 Implicit solution = phase trajectory (here C is energy):

dy
dx

=
ẏ
ẋ

= −
ω2 sin x

y
=⇒

1
2
y2−ω2 cos x = C = const. i.e. a curve for each C .

3 Equilibrium points (xe , ye) = constant solutions of (2):

⇔ (ye ,−ω2 cos xe) = (0, 0)⇔ (xe , ye) = (nπ, 0), n ∈ Z.

4 Phase diagram: All phase trajectories (periodic in x , symmetric about y = 0)

5 Interpretation: Red = rotations, green = swinging back and forth.
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Motivation: The pendulum

Stabililty:

A solution is stable if all solutions starting suffiently near remain near the solution for
all later times.

Stability for the pendulum:

Solutions follow the directions of the arrows, so the phase portrait indicate that:
1 The equilibrium points ((2m + 1)π, 0) are unstable.
2 The separatrices (blue curve) are unstable.
3 Other trajectories are stable: Equi. pt’s (2mπ, 0), cosine/ellipse like trajectories.

Due to small disturbances, physical systems tend over time to be (near) their stable
equilibrium solutions (not neccesarily equilibrium points).

ERJ (NTNU) Summary of Lecture 15.1.2013 January 15, 2013 2 / 2



Linear 2 × 2 systems of ODEs

Initial value problem:
dx1

dt
= a11x1 + a12x2

dx2

dt
= a21x1 + a22x2,

or
d~x
dt

= A~x or
dx
dt

= Ax ,(1)

~x(t0) = ~x0.(2)

where t0 ∈ R, A =
[ a11 a12

a21 a22

]
∈ R2×2 (constant), and ~x(t) = x(t) =

(
x1(t)
x2(t)

)
.

Autonomous equation (does not depend on t) in normal form (like ẋ = f (x , t)).

Results:
1 Theorem 1: There is only one solution of (1) and (2) for all t ∈ R.

2 Theorem 2: x1 and x2 solve (1) ⇒ c1~x1 + c2~x2 solve (1) for all c1, c2 ∈ R.

3 Theorem 3: x1 and x2 solve (1) and are linearly independent
⇒ any solution of (1) can be written as c1~x1 + c2~x2 for some c1, c2 ∈ R.

Lemma: Solutions x1 and x2 of (1) are linearly independent on an interval I if
and only if x1(t0) and x2(t0) are linearly independent for some t0 ∈ I .

In Tm. 3 x1, x2 is a basis, and ~x = c1~x1 + c2~x2 a general solution of (1).
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Solving equation (1)

d~x
dt

= A~x where A =

[
a11 a12
a21 a22

]
∈ R2×2.(1)

Idea: Find a basis of two independent solutions.

Test solution: ~x = ~veλt , ~v 6= ~0.

1 Solves (2) iff (A− λI )~v = ~0 . . . Eigenvalue problem.

2 Non-zero solutions ~v iff characteristic equation holds

det(A− λI ) = λ2 − pλ+ q = 0, where

{
p = trA = a11 + a22,

q = detA = a11a22 − a12a21.

3 Hence always solutions (λ1, ~v1), (λ2, ~v2), but complex solutions possible.
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Solving linear 2x2 systems

ẋ = Ax or
(

ẋ1
ẋ2

)
=

(
a11 a12
a21 a22

)(
x1
x2

)
(1)

Test solution: x = veλt , v 6= 0.
1 Solves (1) iff (A− λI )v = 0 . . . Eigenvalue problem . . . solutions iff:

det(A−λI ) = λ2−pλ+q = 0, q = a11+a22, q = a11a22−a12a21.

2 Hence always solutions (λ1, v1), (λ2, v2). All possible cases:
1 λ1 6= λ2 real: v1, v2 ∈ R2 are linearly independent.
2 λ1 = λ2 real: v1, v2 ∈ R2 may or may not be lin. independent.
3 λ1 = λ̄2 complex: v1 = v̄2 ∈ C2 are linearly independent.

General solution: x = C1x1 + C2x2, C1,C2 ∈ R, where

1 λ1, λ2 real, v1, v2 lin. independent: x1(t) = v1eλ1t x2(t) = v2eλ2t

2 λ1 = λ2 real, only one lin. indep. v : x1(t) = veλ1t and

x2 = (vt + u)eλ1t where (A− λ1I )u = v .

3 λ1 = λ̄2 = α− iβ complex: x1(t) = Re(v1eλ1) x2(t) = Im(v1eλ1)
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Linear 2x2 systems

ẋ = Ax or
(

ẋ1
ẋ2

)
=

(
a11 a12
a21 a22

)(
x1
x2

)
(1)

1 Thm: All solutions of (1) can be written in the form

x(t) = C1x1(t) + C2x2(t),

where x1 and x2 are defined as above in each case.

2 Thm: All solutions of (1) are linear combinaitions of products of
trigonometric, exponential, and plynomial functions.

3 Thm: The initial value problem (1) and

x(0) = x0,(2)

has a solution for all x0 ∈ R2 and all t ∈ R.
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Fundamental matrix and Stability

ẋ(t) = Ax(t),(1)
x(t0) = x0.(2)

where A ∈ R2×2 (constant) and x : R→ R2.

Concepts:
1 Fundamental matrix: Φ(t) = [x1(t), x2(t)] where x1, x2 basis for (1)
2 Flow φ: x(t) = φ(t; x0, t0) solve (1) and (2).
3 Lemma: φ(t; x0, t0) = Φ(t)Φ(t0)−1x0.

Stability: Let x(t) = φ(t; x0, t0).
1 x(t), t > t0, stable if for all ε > 0 there is δ > 0 such that

|x1 − x0| < δ ⇒ |φ(t; x1, t0)− x(t)| < ε for all t > t0.

2 x(t), t > t0, asymptotically stable if stable and there is η > 0 s.t.

|x1 − x0| < η ⇒ |φ(t; x1, t0)− x(t)| → 0 as t →∞.

Obs: These definitions also hold for general non-linear n × n systems!
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Stability of solutions of linear systems

ẋ(t) = Ax(t),(1)
x(0) = x0.(2)

where A ∈ R2×2 (constant) and x : R→ R2.

Theorem 1: Let Φ be any fundamental matrix of (1).

1 ‖Φ(t)‖ ≤ M <∞ for all t ≥ t0 ⇒ all solutions of (1) are stable.
2 limt→∞ ‖Φ(t)‖ = 0 ⇒ all solutions of (1) are asymptot. stable.
3 limt→∞ ‖Φ(t)‖ =∞ ⇒ all solutions of (1) are unstable.

Theorem 2: Let λ1, λ2 be the eigenvalues of A.

1 all solutions of (1) are stable ⇒ maxi Re(λi ) ≤ 0.
2 maxi Re(λi ) ≤ 0 and λ1 6= λ2 ⇒ all solutions of (1) are stable.
3 maxi Re(λi ) < 0 ⇒ all solutions of (1) are asymptot. stable.
4 maxi Re(λi ) > 0 ⇒ all solutions of (1) are unstable.

ERJ (NTNU) Summary of Lecture 24.1.2013 January 24, 2013 2 / 2



Autonoumous linear 2x2 systems

ẋ = Ax ; A =

[
a11 a12
a21 a22

]
, x =

[
x1
x2

]
.(1)

Equilibrium points:
Constant solutions xe of (1), i.e. solutions of Axe = 0.
λ1, λ2 ∈ R: Node if λ1λ2 > 0, and saddle if λ1λ2 < 0.
λ1 = λ̄2 ∈ C: Spiral if Reλ1 6= 0, and center if Reλ1 = 0.
λ1 = λ2 or either λ1 = 0 or λ2 = 0: Degenerate cases.

Phase diagrams/portraits:
1 Phase trajectory through x0:

{
x(t) : t ∈ R, x solves (1), x(0) = x0

}
Tangent at x : Ax [= ẋ ].
Direction: Direction of x as time increases = tangent direction

- Direction in one pt. → all directions by continuity of directions
Equation: dx2

dx1
= ẋ2

ẋ1
= a21x1+a22x2

a11x1+a12x2

Equilibrium point: Trajectory = one point

2 Phase plane/diagram: x1x2-plane/sketch of “all” phase trajectories.

Remark: One trajectory through every x0 ∈ R2; trajectories do not cross!
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Linear non-autonoumous nxn systemsẋ = A(t)x + b(t),

x(t0) = x0,
A : R→ Rn×n; b, x : R→ Rn.(1)

We always assume: A(t) and b(t) continuous for all t ∈ R.

1 Non-homogeneous, non-autonomous equation in normal form.
2 There exists a unique solution of (1) for all x0 ∈ Rn and t ∈ R.
3 Flow φ(t; x0, t0): The solution of eq’n (1)1 and initial data (1)2.

Homogeneous equation b ≡ 0:

ẋ = A(t)x(2)
1 Basis: n linearly independent solutions x1, . . . , xn of ẋ = Ax
2 Fundamental matrix Φ: Any for all t ∈ R invertible solution of

Φ̇ = AΦ, A,Φ : R→ Rn×n.

3 There always exists a fundamental matrix (and a basis) for (1).

4 OBS: Φ = [x1, . . . , xn] and b ≡ 0⇒ φ(t; x0, t0) = Φ(t)Φ(t0)−1x0
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Linear n × n systems

Non-autonomous equation ẋ = A(t)x + b(t); A : R→ Rn×n

Φ any fundamental matrix

⇒ x(t) = Φ(t)Φ−1(t0)x(t0) + Φ(t)
∫ t
t0

Φ−1(s)b(s)ds

Autonomous equation ẋ = Ax ; A ∈ Rn×n constant

1 x = reλt solve ẋ = Ax iff (A− λI )r = 0

2 Basis when n linearly independent eigen vectors r1, . . . , rn:

x1(t) = r1eλ1t , . . . , xn(t) = rneλnt .

3 Basis in general:

x1(t) = p1(t)eλ1t , . . . , xn(t) = pn(t)eλnt ,

where p1, . . . , pn : R→ Cn are polynomials of order ≤ n.

4 Real basis: Re xi , Im xi , i = 1, . . . , n (give n lin. indep. solutions).
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Jordan form and exponential
Jordan form: A ∈ Cn×n

1 Eigenvalues/-vectors λi/ri .
2 Complex diagonalization: When n linearly independent ri ’s,

A = PΛP−1 where Λ = diag(λi ) ∈ Cn×n, P = [r1 . . . rn].

3 Jordan form: For any real matrix A! There is a P s.t.

A = P−1JP where J = diag(B1, . . . ,Bm) ∈ Rn×n,

Bi = λi ,

(
Reλi Imλi
−Imλi Reλi

)
=: Di ,

 λi 1 0
. . . . . .

λi 1
0 λi

 , or

Di I 0
. . . . . .

Di I
0 Di

 .
Matrix exponential: A ∈ Cn×n

1 eA := limn→∞

(
I + A + 1

2A2 + · · ·+ 1
n!A

n
)
.

2 eA is well-defined and ‖eA‖ ≤ e‖A‖.
3 Φ(t) = etA solve the following initial value problem

Φ̇ = AΦ and Φ(0) = I .
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Matrix exponential and stability

ẋ = A(t)x + b(t); A : R → Rn×n; b, x : R → Rn.(1)

Matrix exponential:
1 A = PJP−1 ⇒ eA = PeJP−1

2 etA fundamental matrix; the solution of (1) when A = konst is

x(t) = e(t−t0)Ax(t0) +

∫ t

t0
e(t−s)Ab(s)ds.

Stability:
1 Theorem: Φ fundamental matrix of A, Φ̇ = A(t)Φ.

(a) Φ bounded, t ≥ t0 ⇒ all solutions of (1) stable
(b) Φ→ 0 as t →∞ ⇒ all solutions of (1) asympt. stable
(c) Φ unbounded, t ≥ t0 ⇒ all solutions of (1) unstable

2 Theorem: A = konst, eigenvalues λi .
(a) maxi Reλi ≤ 0 and λi 6= λj ⇒ all solutions of (1) stable
(b) maxi Reλi < 0 ⇒ all solutions of (1) asympt. stable
(c) maxi Reλi > 0 ⇒ all solutions of (1) unstable
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Stability when A is non-constant

ẋ = A(t)x + b(t); A : R → Rn×n; b, x : R → Rn.(2)

1 Assume: A(t) = B + C (t) where B constant,
∫∞
t0

‖C (s)‖ds <∞.

2 Theorem: Φ fundamental matrix for B, Φ̇ = BΦ.
(a) Φ bounded, t ≥ t0 ⇒ all solutions of (1) stable
(b) Φ→ 0 as t →∞ ⇒ all solutions of (1) asympt. stable

3 Theorem: B has eigenvalues λi .
(a) maxi Reλi ≤ 0 and λi 6= λj ⇒ all solutions of (1) stable
(b) maxi Reλi < 0 ⇒ all solutions of (1) asympt. stable

4 Grönwall’s Lemma
Let u, v : R→ R be continuous, ≥ 0, K > 0, and

u(t) ≤ K +

∫ t

t0
v(s)u(s) ds for t > t0,

then u(t) ≤ Ke
∫ t
t0

v(s) ds for t > t0.
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Stability when A is non-constant

ẋ = A(t)x + b(t); A : R→ Rn×n; b, x : R→ Rn.(1)

1 Assume: A(t) = B + C (t) where B constant,
∫∞
t0
‖C (s)‖ds <∞.

2 Theorem: Φ fundamental matrix for B, Φ̇ = BΦ.

(a) Φ bounded, t ≥ t0 ⇒ all solutions of (1) stable

(b) Φ→ 0 as t →∞ ⇒ all solutions of (1) asympt. stable

3 Theorem: B has eigenvalues λi .

(a) maxi Reλi ≤ 0 and λi 6= λj ⇒ all solutions of (1) stable

(b) maxi Reλi < 0 ⇒ all solutions of (1) asympt. stable
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Lipschitz condition

Definitions: Let f = (f1, . . . , fn) : R → Rn, R ⊂ Rn+1.

1 f (x) is Lipschitz in a set Ω ⊂ Rn if there is L > 0 such that

|f (x)− f (y)| ≤ L|x − y | for all x , y ∈ Ω.

2 f (x , t) is x-Lipschitz in a set R ⊂ Rn+1 if there is L > 0 such that

|f (x , t)− f (y , t)| ≤ L|x − y | for all (x , t), (y , t) ∈ R.

3 f (x) is locally Lipschitz on Ω if they are Lipschitz on each closed
bounded subset K ⊂ Ω (or – on each closed bounded ball B ⊂ Ω).

4 Locally x-Lipschitz defined similarly.

5 Lipschitz constant: The smallest L in the above inequalities.

6 [
√

x2
1 + x2

3 , 5,
x2
1

1+x2
1+x2

3
] Lip. in R3; x2 only loc. Lip./

√
x not in R
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Lipschitz condition

1 f (x , t) is x-Lipschitz in a set R ⊂ Rn+1 if there is L > 0 such that

|f (x , t)− f (y , t)| ≤ L|x − y | for all (x , t), (y , t) ∈ R.

2 f (x , t) is locally x-Lipschitz in R if it is x-Lipschitz on each closed
bounded subset K ⊂ Ω (or closed ball B ⊂ Ω).

3 Jacobi matrix: Df (x , t) =


∂f1
∂x1

...
∂f1
∂xn

...
. . .

...
∂fn
∂x1

... ∂fn
∂xn

.

4 f is C 1 in closed, bnd, convex R ⇒ f x-Lip. in R, L ≤ max
R
‖Df ‖.
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Uniqueness and continuous dependence

ẋ(t) = f (x(t), t),(1)
x(t0) = x0.(2)

Uniqueness:
If f is continuous and locally x-Lipschitz in a domain R, then there
are not more than one solution of (1) and (2) in R.

Continuous dependence on initial data:
Let R ⊂ RN+1 be a domain. If

1 f is continuous and x-Lipschitz in R,
2 (x(t), t), (y(t), t) ⊂ R for t ∈ [t0, b),
3 x and y solve{

ẋ = f (x , t) in (t0, b)
x(t0) = x0

and

{
ẏ = f (y , t) in (t0, b)
y(t0) = y0,

then |x(t)− y(t)| ≤ eL(t−t0)|x0 − y0| in t ∈ [t0, b).

Remark: x(t) = φ(t; x0, t0) depends (locally Lipschitz) continuous on x0.
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Continuous dependence on the data
Theorem:

Let R ⊂ RN+1 be a domain. If

1 f is continuous and x-Lipschitz in R,

2 g is continuous and there is ε > 0 s.t. |f (x , t)− g(x , t)| ≤ ε in R,

3 (x(t), t), (y(t), t) ⊂ R for t ∈ [t0, b),

4 x and y solve{
ẋ = f (x , t) in (t0, b)
x(t0) = x0

and

{
ẏ = g(y , t) in (t0, b)
y(t0) = y0,

then

|x(t)− y(t)| ≤ e2L(t−t0)|x0 − y0|+
ε

L

√
e2L(t−t0) − 1 in [t0, b),

where L ≤ maxR ‖Df (x , t)‖.

Remark: The solution x(t) = φ(t; x0, t0, f ) is continuous in x0, f (, t0!).
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Integral equation and Piccard interations

ẋ(t) = f (x(t), t),(1)
x(t0) = x0.(2)

Lemma: If f is continous, then x(t) solves (1) and (2) if and only if x(t)
is a continuous solution of (3):

x(t) = x0 +

∫ t

t0
f (x(s), s)ds.(3)

Piccard iterations:

x0(t) = x0

x1(t) = x0 +

∫ t

t0
f (x0(s), s)ds

...

xk(t) = x0 +

∫ t

t0
f (xk−1(s), s)ds

Idea: xk is an approximation of solution x of (3) and xk → x uniformly.
[{xk} Cauchy sequence in C [t0 − T , t0 + T ]]
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Existence of solutions

ẋ(t) = f (x(t), t),(1)
x(t0) = x0.(2)

Theorem 1: (“Global” existence)
If f is continuous and x-Lipschitz for x ∈ Rn and |t − t0| ≤ T , then there
exists a solution of (1) and (2) for |t − t0| ≤ T .

Theorem 2: (Local existence 1 – Piccard-Lindelöf)
If f is continuous + x-Lipschitz for |x − x0| ≤ K , |t − t0| ≤ T , then there
exists a sol’n of (1) + (2) for |t − t0| ≤ min(T , K

M ), M = max
|t − t0| ≤ T
|x − x0| ≤ K

|f (x , t)|

Theorem 3: (Local existence 2 – Peano)
If f is continuous for |x − x0| ≤ K and |t − t0| ≤ T , then there exists a
solution of (1) and (2) for |t − t0| ≤ min(T , K

M ) where M as in Thm. 2.

Remark: In Thm’s 1 and 2, the solution is unique – but not in Thm 3!
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Existence interval and C 1 dependence on x0.

ẋ(t) = f (x(t), t),(1)
x(t0) = x0.(2)

Theorem 1: f continuous and x-Lipschitz on domain R 3 (x0, t0).
(a) There exists a unique solution of (1) and (2) on a maximal existence

interval (t0 − a, t0 + b) for some a, b > 0.

(b) If b <∞, then either (x(t), t)→ ∂R or |x(t)| → ∞ as t → b−.

Remark:
1 Either b =∞, or x blows up in finite time, or

(x(t), t) leaves in finite time the region R of well-posedness.
2 b = existence/life time of the solution of (1) and (2).

Theorem 2: f ∈ C 1 and φ(t; x0) (unique) solution of (1) and (2).

Then φ is C 1 in x0 (and t), and w = ∂φ
∂xj

is the unique solution of

wt = Df (φ(t; x0), t)w , w(0) = ej .
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Phasediagram for autonomous systems

ẋ = f (x), f ∈ Rn independent of t(1)
x(t0) = x0.(2)

1 Phase trajectory through x0:
{
x(t) : t ∈ R, x solves (1), x(0) = x0

}
Tangent (direction) at x : f (x) [= ẋ ].
- f continuous ⇒ continuity of directions

Equation: dx2
dx1

= ẋ2
ẋ1

= f2(x)
f1(x)

, . . . , dxn
dx1

= ẋn
ẋ1

= fn(x)
f1(x)

Equilibrium point xe : f (xe) = 0, and trajectory = one point

2 Phase diagram: Sketch of “all” phase trajectories.

3 Well-posedness for (1) and (2) for all x0, t
⇒ trajectories exist + do not cross + pass through every x0 ∈ Rn.

4 Separatrix: Trajectory separating regions w. different sol’n behaviour

5 Only in non-linear systems: Multiple isolated equilibrium points,
limit cycles, separatix cycles, and chaos (in Rn, n ≥ 3).
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Linearization

ẋ = f (x).(1)

Linearized about equi. pt. x0: f (x) = f (x0) + Df (x0)(x − x0) + . . .

ẏ = Df (x0)y (y ≈ x − x0).(2)

1 Near x0, f (x0) 6= 0: Phase diagram ≈ straigth lines (if f ∈ C 1).

2 Near x0, f (x0) = 0 and hyperbolic: Reλi 6= 0 for eig.val’s of Df (x0).

1 Phasediagram (1) near x = x0 ≈ phasediagram (2) near y = 0 .
2 Same type of equilibrium point in x = x0 and y = 0.
3 Justification: Hartman-Grobman + Hartman thm’s (needs f ∈ C 2).

3 Near x0, f (x0) = 0 and non-hyperbolic:

No information from linearization – need higher order theory.
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Linearization and Hartman-Grobman

ẋ = f (x).(1)

Linearized about equi. pt. x0: f (x) = f (x0) + Df (x0)(x − x0) + . . .

ẏ = Df (x0)y (x − x0 = y).(2)

1 Near x0, f (x0) 6= 0: Phase diagram ≈ straigth lines (if f ∈ C 1).

2 Near x0, f (x0) = 0 and hyperbolic: Reλi 6= 0 for eig.val’s of Df (x0)

1 Phase diagram (1) looks like phase diagram (2) near y = 0
2 (1) and (2) has same types of equilibrium points in x0 and y = 0

(including asymptotic lines etc.)
3 Justification: Hartman-Grobman + Hartman thm’s (need f ∈ C 2!).

3 Near x0, f (x0) = 0 and non-hyperbolic:
No information from linearization – need higher order theory.
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Reminder: Stability

ẋ(t) = f (x(t), t),(1)
x(t0) = x0.(2)

Flow φ: x(t) = φ(t; x0, t0) solution of (1) and (2).

Stability: Let x(t) = φ(t; x0, t0).

1 x(t) stable for t ≥ t0 if for all ε > 0 there is δ > 0 such that

|x1 − x0| < δ ⇒ |φ(t; x1, t0)− φ(t; x0, t0)| < ε for all t > t0.

2 x(t) asymptotic stable for t ≥ t0 if stable and there is η > 0 s.t.

|x1 − x0| < η ⇒ |φ(t; x1, t0)− φ(t; x0, t0)| → 0 as t →∞.
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Stability of equilibrium points
Nearly linear systems:

ẋ = Ax + h(x , t); A ∈ Rn×n, x : R→ Rn, h : Rn+1 → Rn.(1)

Theorem 1:
Assume λi eigenvalues of A, h ∈ C 1, and

|h(x , t)| = o(|x |) as x → 0 uniformly in t.

maxi Reλi < 0 ⇒ 0 is an asympt. stable equilibrium pt. of (1).

Autonomous systems:
ẋ = f (x); x , f : R→ Rn.(2)

Theorem 2: (Linearization)
Assume f ∈ C 1, f (x0) = 0, and λi eigenvalues of Df (x0).
(a) maxi Reλi < 0 ⇒ x0 is an asympt. stable equilibrium pt. of (2)
(b) maxi Reλi > 0 ⇒ x0 is an unstable equilibrium pt. of (2)
(c) maxi Reλi = 0 ⇒ NO CONCLUSION!!

OBS: Stability based on Df = stability by linearization, ẏ = Df (x0)y .
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Liapunov’s direct method

More general method than linearization.
Need to construct (find) a Liapunov function.

ẋ = f (x); x , f : R→ Rn.(2)

Definition: V (x) is a strong Liapunov function for (2) in domain B 3 0 if
1 V ∈ C 1(B),
2 V (0) = 0 and V (x) > 0 for x ∈ B \ {0},
3 V̇ (0) = 0 and V̇ (x) < 0 for x ∈ B \ {0}, where

V̇ (x) =
d
dt

V (x(t)) = ∇V (x) · ẋ = ∇V (x) · f (x).

Theorem 2:
Assume f (0) = 0 and f Lipschitz in some domain B 3 0.
If V (x) is a strong Liapunov function for (2) in B, then x = 0 is an
asymptotically stable equilibrium point for (2).
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Liapunov’s direct method

ẋ = f (x); x : R→ Rn, f : Rn → Rn.(1)

Weak (strong) Liapunov function V (x) for (1) in domain B 3 0:
1 V ∈ C 1(B),
2 V (0) = 0 and V (x) > 0 for x ∈ B \ {0},
3 V̇ (0) = 0 and V̇ (x) ≤ 0 (V (x) < 0) for x ∈ B \ {0}, where
4 V̇ (x) = d

dt V (x(t)) = ∇V (x) · ẋ = ∇V (x) · f (x).

Candidates:
V (x) =

∑
i cix2

i , or V (x) = xTAx for A = AT positive definite, or
V = energy/Hamiltonian etc.

Theorem: Assume f (0) = 0 and f Lipschitz in some domain B 3 0.
(a) If V (x) is a weak Liapunov function for (1) in B,

then x = 0 is an stable equilibrium point for (1).

(b) If V (x) is a strong Liapunov function for (1) in B,
then x = 0 is an asymptotically stable equilibrium point for (1).
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Liapunov methods for autonomous systems

ẋ = f (x); f , x ∈ Rn.(1)

Definitions:
1 V̇ (x) = d

dt V (x(t)) = ∇V (x) · f (x)
2 V (x) weak (strong) Liapunov function of (1) in domain B 3 0 if

1 V ∈ C 1(B),
2 V (0) = 0 and V (x) > 0 for x 6= 0
3 V̇ (0) = 0 and V̇ (x) ≤ 0 (V̇ (x) < 0) for x 6= 0

Theorem: Assume f (0) = 0 and f Lipschitz in a domain B 3 0.
1 V (x) weak Lipunov function for (1) ⇒ x(t) ≡ 0 is stable
2 V (x) strong Lipunov function for (1) ⇒ x(t) ≡ 0 is asympt. stable
3 U(x) satisfy 1–3 below ⇒ x(t) ≡ 0 is unstable

1 U ∈ C 1(B),
2 U(0) = 0; for any δ > 0, there is x ∈ B s.t. |x | < δ and U(x) > 0,
3 there is η > 0 such that U̇(x) > 0 for all x s.t. |x | < η and U(x) > 0.

Examples: V = 1
2 (x

2
1 + x2

2 ), = energy/Hamiltonian; U = x1x2, = x2
1 − x2

2
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Invariant domains and domains of attraction

ẋ = f (x); f , x ∈ Rn.(1)

1 Flow: φ(t; x0) solution of (1) and x(0) = x0.
2 Ω ⊂ R invariant (positive invariant) under (1)

if φ(t; x0) ∈ Ω for all t ∈ R (t ≥ 0) and all x0 ∈ Ω.

Ωa = {x ∈ Rn : limt→∞ φ(t; x) = x0} domain of attraction of x0.

3 Lemma: Ω = {x : V (x) ≤ c} is positive invariant if f ,V ∈ C 1 and

∇V (x) 6= 0 and V̇ (x) = ∇V (x) · f (x) ≤ 0 on V (x) = c .

4 Lasalle’s invariance principle. Assume:
1 Ω positive invariant, closed and bounded, 0 ∈ Ω.
2 f (0) = 0 and f Lipschitz in Ω,
3 V (x) is a weak Liapunov function on Ω,
4 there is no global in time solution of (1) such that

x(t) ∈ Ω \ {0} and V (x(t)) = constant for all t ∈ R.

Then x = 0 is asymptotically stable and Ω ⊂ Ωa (attraction).
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Hamiltonian 2× 2 systems

ẋ = f (x); x = (x1, x2), f = (f1, f2).(1)

Definition: (1) Hamiltonian if there is a Hamilton function H(x) ∈ C 2 s.t.

f1 =
∂H
∂x2

and f2 = − ∂H
∂x1

.

1 (1) Hamiltonian ⇔ ∇ · f = 0 (f divergence free)

2 H Hamilton function, x(t) solution of (1) ⇒ H(x(t)) = constant

3 Equilibrium points of (1) = critical points of H (∇H = 0)

4 Classification of equilibrium point x0 via 2nd derivative test for H:

q(x0) > 0 center, q(x0) < 0 saddle, q(x0) = 0 no conclusion,

where q = det D2H = Hx1x1Hx2x2 −Hx1x2Hx2x1 = λ1(D2H)λ2(D2H).

OBS: Similar results hold for 2n × 2n systems: f1 = ∇x2H, f2 = −∇x1H

ERJ (NTNU) Summary of Lecture 4.4.2013 April 4, 2013 1 / 2



Index theory for 2× 2 systems

ẋ = f (x); x , f ∈ R2.(1)

1 Polar angle of f : φ = arctan f2
f1

2 Curve Γ: Simple, closed, p.w. C 1, oriented counter cl.wise, f |Γ 6= 0

3 Index of Γ: IΓ = 1
2π

∮
Γ
dφ

4 Γ = {y(s) : s0 ≤ s ≤ sT}:

IΓ =
1
2π

∫ sT

s0

f1 d
ds f2 − f2 d

ds f1
f 2
1 + f 2

2
ds; fi (s) = fi (y(s)),

IΓ = 1
2π

∫ y(sT )

y(s0)
∇φ · dy = φ(y(sT ))−φ(y(s0))

2π ∈ Z since f (s0) = f (sT )

5 Winding number of Γ:
WΓ = 1

2π

∮
Γ

X1dX2−X2dX1
X2

1 +X2
2

= no. of times Γ winds about 0 c. cl.wisely

6 IΓ = WΓf when Γf = {f (x) : x ∈ Γ} [X (s) = f (y(s))]

7 IΓ = WΓf = 1
2 (p − q) where p (q) is number of times f (x) parallel

with any given axis and crosses it counter clockwisely (clockwisely) as x
traverses Γ counter clockwisely.
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Index theory for 2× 2 systems

ẋ = f (x); x = (x1, x2), f = (f1, f2).(1)

Definition:
1 Index of curve Γ: IΓ = 1

2π

∮
Γ
dφ

2 Index of equilibrium point xe :
Ixe = IΓ for any Γ encircling xe but no other equilibrium point of (1).

Remarks:
1 φ = arctan f2

f1
polar angle of f .

2 Γ: Simple, closed, p.w. C 1 curve oriented counter cl.wise, f |Γ 6= 0.
3 Saddle: I = −1; node, spiral, center, closed phase trajectory: I = 1
4 There are equilibrium points with I = n for any n ∈ Z.

Theorem: Assume f is C 2 and f = 0 in Ω only at x1, . . . , xn. Then

IΓ = Ix1 + Ix2 + · · ·+ Ixn

for any curve Γ in Ω encircling x1, . . . , xn.
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Closed trajectories and Poincare sequences

ẋ = f (x); x , f ∈ R2.(1)

Closed trajectories
1 Closed phase trajectories ⇔ periodic solutions (autonomous syst.)
2 Limit cycles: Isolated closed phase trajectories.
3 Index test: Closed curve Γ surround equilibrium points xi , index Ii :∑

Ii 6= 1 ⇒ Γ is not a phase trajectory.

4 Dulac’s test: Ω open, simply connected; ρ, f = (f1, f2) ∈ C 1(Ω):

∇ · (ρf ) < 0 in Ω (or > 0) ⇒ no closed phase trajectory in Ω.

5 ρ ≡ 1 → Bendixon’s negative criterion

Poincare sequences:
1 Poincare cross section Σ: curve transversal (=non-parallel) to f
2 Poincare map PΣ of x0∈Σ: Point of first return of flow φ(t; x0) to Σ

3 Poincare sequence: x0,PΣ(x0), . . . ,Pn
Σ(x0), . . . (Pn = P ◦P ◦ · · · ◦P)
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Poincare Bendixon’s theorem

ẋ = f (x); x : R→ R2, f : R2 → R2.(1)

1 Γ±x0
= {φ(t; x0) : t ∈ [0,±∞)} (Γx0 = Γ+

x0
∪ Γ−x0

trajectory; φ flow)

2 Ω ⊂ R2 positive invariant under (1): Γ+
x0
⊂ Ω for all x0 ∈ Ω.

3 ω-limit set of Γx0 : All z s.t. x(tn) = φ(tn; x0) →
tn→∞

z for some {tn}n.
4 Cycle: A periodic trajectory but no equi. point (limit or center c.).

Theorem (Poincare-Bendixson):
Γ+ ⊂ closed bounded K ; no equilibrium points in ωΓ ⇒ ωΓ is a cycle.

Lemma 1: Γ+ ⊂ K , K closed, bounded (=compact)
⇒ ωΓ ⊂ K , 6= ∅, closed, bounded, connected, invariant under (1).

Lemma 2: Assume L transversal line segment (L 6 ‖f )
1 Γ crosses L in two different points ⇔ Γ is not closed.
2 Crossing points of Γ and L are ordered the same way along L as along Γ.

Corollary: x0 ∈ ωΓ ∩ Γ ⇔ Γ closed trajectory.
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Application of Poincare Bendixon’s theorem

ẋ = f (x); x : R→ R2, f : R2 → R2.(1)

Theorem (Poincare-Bendixson):
Γ+ ⊂ closed bounded K ; no equilibrium points in ωΓ ⇒ ωΓ is a cycle.

Cycle: A periodic trajectory but not equilibrium point (limit or center c.)
Corresponds to a periodic solution.

Corollary 1: K ⊂ R2 closed, bounded, pos. invariant, with no equi. pt’s
⇒ at least one cycle in K .

Lemma: Ω = {x : V (x) ≤ c} is positive invariant if f ,V ∈ C 1 and

∇V (x) 6= 0 and V̇ (x) = ∇V (x) · f (x) ≤ 0 on V (x) = c .

Corollary 2: There is at least one cycle in K = {x : c1 ≤ V (x) ≤ c2} if
1 K is bounded, contains no equilibrium points,
2 ∇V 6= 0 and V̇ = ∇V · f ≥ 0 on V (x) = c1, and
3 ∇V 6= 0 and V̇ = ∇V · f ≤ 0 on V (x) = c2.
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The Lienard equation

ẍ + f (x , ẋ)ẋ + g(x) = 0 ⇔

{
ẋ1 = x2

ẋ2 = −f (x1, x2)x2 − g(x1)
(2)

Obs:

1 Energy: E (x1, x2) = 1
2x2

2 + G (x1), where G (x) =
∫ x
0 g(s)ds.

2 d
dt E (x(t)) = ∇E (x) · ẋ = −f (x1, x2)x2

2 ≤ 0 (≥ 0) if f ≥ 0 (f ≤ 0)

Theorem (cycles): Equation (2) has at least one cycle if

(a) f (x1, x2) continuous, f < 0 for |x | < r , f > 0 for |x | > R,

(b) g(x1) continuous, g < 0 for x1 < 0, g > 0 for x1 > 0,

(c) G (x1) =
∫ x1
0 g(s)ds →∞ as |x1| → ∞.

Idea: x = 0 only equilibrium point, E (x) = c1 and E (x) = c2 bounds
bounded invariant region for c1 small and c2 big, use Poincare-Bendixon.
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The Lienard equation

ẍ + f (x , ẋ)ẋ + g(x) = 0 ⇔
{

ẋ1 = x2

ẋ2 = −f (x1, x2)x2 − g(x1)
(1)

Energy: E = 1
2 x2

2 +
∫ x
0 g(s)ds; Ė = −f (x1, x2)x2

2 .

Theorem (cycle): Equation (1) has at least one cycle if
(a) f (x1, x2) continuous, f < 0 for |x | < r , f > 0 for |x | > R,
(b) g(x1) continuous, g < 0 for x1 < 0, g > 0 for x1 > 0,
(c) G(x1) =

∫ x1
0 g(s)ds →∞ as |x1| → ∞.

Theorem (centre): Equation (1) has a centre at x = 0 if for |x | < R:
(a) f = f (x1) continuous, odd, one sign for x1 < 0,
(b) g(x1) continuous, odd, g > 0 for x1 > 0,
(c) g(x1) > αf (x1)

∫ x1
0 f (s)ds for α > 1.

Obs: Trajectories loose energy in {x1 ≥ 0} but gain same amount in {x1 < 0}.
Theorem (limit cycle): Equation (1) has one and only one cycle if
(a) F (x) =

∫ x
0 f (s)ds, g locally Lipschitz,

(b) g odd, g > 0 for x > 0,
(c) F odd, = 0 only at x = 0,±a, F →

x→∞
∞, monotonically for x > a.

Obs: The proof uses the Lienard plane: ẋ1 = x2 − F (x1), ẋ2 = −g(x1)
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