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Solution

Problem 1

a. The system is linear, with matrix

𝐴 = (0 −1
1 −2) ,

which has trace 𝑝 = −2 and determinant 𝑞 = 1. The characteristic
polynomial is 𝜆2 −𝑝𝜆 + 𝑞 = 𝜆2 +2𝜆 + 1 = (𝜆 + 1)2, so there is only one
eigenvalue 𝜆 = −1. The corresponding eigenspace is spanned by (1, 1).
It is helpful to note the nullclines, as shown in the picture: ̇𝑥 = 0 ⟺
𝑦 = 0 and ̇𝑦 = 0 ⟺ 𝑥 = 2𝑦. Since the system is linear, the phase
diagram is scale invariant, so there is no need to drawmore curves than
shown.

b. We find 𝑟 ̇𝑟 = 𝑥 ̇𝑥 + 𝑦 ̇𝑦 = −2𝑦2 and 𝑟2 ̇𝜃 = 𝑥 ̇𝑦 − 𝑦 ̇𝑥 = 𝑥2 − 2𝑥𝑦 + 𝑦2 =
(𝑥 − 𝑦)2. Substituting in 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 we end up with

̇𝑟 = −2𝑟 sin2 𝜃, ̇𝜃 = (cos 𝜃 − sin 𝜃)2.

Note that ̇𝜃 = 0 ⟺ cos 𝜃 = sin 𝜃 ⟺ 𝜃 = (𝑘 + 1
2 )𝜋 for some integer 𝑘. This corresponds to

the invariant line 𝑦 = 𝑥. For all other values, 𝜃 grows from (𝑘 − 1
2 )𝜋 (at 𝑡 = −∞) to (𝑘 + 1

2 )𝜋 (at
𝑡 = +∞), which matches the curved paths in the picture. Also ̇𝑟 < 0 except when 𝜃 = 𝑘𝜋, i.e., on
the 𝑥-axis, where ̇𝑟 = 0.

Problem 2

The divergence of the associated vector field is

5 + 2𝑥𝑦 − 𝑦2 − 3 − 𝑥2 − 2𝑥𝑦 = 2 − 𝑥2 − 𝑦2,

which is positive in the specified region.

Problem 3

We want to find a strong Lyapunov function. A good start is to compute

𝑥 ̇𝑥 = −2𝑥2 − 2𝑥𝑦 + 2𝑥𝑦𝑧,
𝑦 ̇𝑦 = 𝑥𝑦 − 𝑦2 − 𝑥𝑦𝑧 − 𝑥𝑦𝑧2,
𝑧 ̇𝑧 = 3𝑥𝑦𝑧2 − 𝑧4.

Next, look for a linear combination of these with positive coefficients resulting in something neg-
ative. This results in

3𝑥 ̇𝑥 + 6𝑦 ̇𝑦 + 2𝑧 ̇𝑧 = −6𝑥2 − 6𝑦2 − 2𝑧4 < 0 for (𝑥, 𝑦, 𝑧) ≠ (0, 0, 0),

so 3𝑥2 + 6𝑦2 + 2𝑧2 is indeed a strong Lyapunov function.

In this case, we were fortunate to get rid of all cross terms (like 𝑥𝑦), though we have inequalities to deal with
those if they are not too large. In more complicated cases, cross terms in the Lyapunov functions may be
needed as well.
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Problem 4

a. To show that the system is Hamiltonian, we may compute the divergence of the associated vector
field (𝑋, 𝑌) = (𝑥2𝑦 + 2𝑦3, −2𝑥3 − 𝑥𝑦2). The result is 2𝑥𝑦 − 2𝑥𝑦 = 0, so the system is indeed
Hamiltonian.

To find a Hamiltonian, we must solve the equations 𝐻𝑦 = 𝑋, 𝐻𝑥 = −𝑌 (where the subscripts
denote partial derivatives). The first of these equations is 𝐻𝑦 = 𝑥2𝑦 + 2𝑦3, which we integrate as
𝐻 = 1

2 (𝑥
2𝑦2 + 𝑦4) + 𝐶(𝑥) where the integration “constant” 𝐶(𝑥) may depend on 𝑥. Plugging this

into the second equation,𝐻𝑥 = 2𝑥3 +𝑥𝑦2, yields 𝑥𝑦2 +𝐶′(𝑥) = 2𝑥3 +𝑥𝑦2. Canceling terms yields
𝐶′(𝑥) = 2𝑥3, with the solution 𝐶(𝑥) = 1

2𝑥
4 (plus an integration constant that we don’t care about).

This results in𝐻(𝑥) = 1
2 (𝑥

4 + 𝑥2𝑦2 + 𝑦4).
We did not really need to do the first part, as finding the Hamiltonian certainly proves that it exists!

b. Writing the system in the form ̇𝑥 = 𝐻𝑦 + (1 − 𝑥2 − 𝑦2)𝑥, ̇𝑦 = −𝐻𝑥 + (1 − 𝑥2 − 𝑦2)𝑦, we find

�̇� = 𝐻𝑥(𝐻𝑦 + (1 − 𝑥2 − 𝑦2)𝑥) + 𝐻𝑦(−𝐻𝑥 + (1 − 𝑥2 − 𝑦2)𝑦)
= (𝑥𝐻𝑥 + 𝑦𝐻𝑦)(1 − 𝑥2 − 𝑦2)
= 2(𝑥4 + 𝑥2𝑦2 + 𝑦4)(1 − 𝑥2 − 𝑦2).

Thus �̇� > 0 for 0 < 𝑥2 + 𝑦2 < 1, and �̇� < 0 for 𝑥2 + 𝑦2 > 1.

Now on one hand,𝐻(𝑥, 𝑦) ≤ 1
2 (𝑥

2+𝑦2)2, so𝐻(𝑥, 𝑦) > 1
2 implies 𝑥

2+𝑦2 > 1, and therefore �̇� < 0.

On the other hand, 𝐻(𝑥, 𝑦) = 3
8 (𝑥

2 + 𝑦2)2 + 1
8 (𝑥

2 − 𝑦2)2 ≥ 3
8 (𝑥

2 + 𝑦2)2, so 𝐻(𝑥, 𝑦) < 3
8 implies

𝑥2 + 𝑦2 < 1, and therefore �̇� > 0.

It follows that the compact set { (𝑥, 𝑦) | 38 ≤ 𝐻(𝑥, 𝑦) ≤ 1
2 } is forward invariant. There are no equlib-

rium points in this set, for at such an equilibrium point, first 1 − 𝑥2 − 𝑦2 = 0 (since �̇� = 0), and
then also 𝑥2𝑦 +2𝑦3 = 0 and−2𝑥3−𝑥𝑦2 = 0. Writing these as (𝑥2+2𝑦2)𝑦 = 0 and (2𝑥2+𝑦2)𝑥 = 0
makes it obvious that (0, 0) is the only equilibrium point.

The Poincaré–Bendixsson theorem now shows the existence of a periodic path.

Problem 5

a. The reflection through the line 𝑥 = 𝑦 maps (𝑥, 𝑦) to (𝑦, 𝑥). If (𝑥(𝑡), 𝑦(𝑡)) is a solution, then so is
(𝑦(𝑡), 𝑥(𝑡)). Thus one phase path is mapped to the other, with orientations preserved.

The reflection through the line 𝑥 + 𝑦 = 0maps (𝑥, 𝑦) to (−𝑦,−𝑥). If (𝑥(𝑡), 𝑦(𝑡)) is a solution, then
so is (−𝑦(−𝑡), −𝑥(−𝑡)). Thus one phase path is mapped to the other, with orientations reversed.

b. The equilibrium points are (0, 0), (1, 1), (−1, −1), (1, −1) and (−1, 1).

The linearization matrix at any equilibrium point (𝑥, 𝑦) is

𝐴 = (−4𝑥
3 2𝑦

2𝑥 −4𝑦3)

At (1, 1), we find

𝐴 = (−4 2
2 −4) , 𝑝 = tr𝐴 = −8 < 0, 𝑞 = det𝐴 = 12 > 0, 𝑝2 − 4𝑞 > 0,

so (1, 1) is a stable node. In particular, it is asymptotically stable.

The equilibrium at (−1, −1) is the image of (1, 1) by the orientation reversing reflection through
the line 𝑥 + 𝑦 = 0, so (−1, −1) is an unstable node.

2 version 1



TMA4165 Differential equations and dynamical systems 2019-08-06 Solution

At (1, −1), we find

𝐴 = (−4 −2
2 4 ) , 𝑝 = tr𝐴 = 0, 𝑞 = det𝐴 = −12 < 0,

so (1, −1) is a saddle point, and therefore unstable.

The equilibrium at (−1, 1) is the image of (1, −1) by the orientation preserving reflection through
the line 𝑥 = 𝑦, so (−1, 1) is a saddle point, too (and unstable).

The linearization of the equilibrium at (0, 0) is trivial (𝐴 = 0), so it has no simple classification.
We can note that the diagonal 𝑥 = 𝑦 is invariant, with solutions satisfying ̇𝑥 = 𝑥2 − 𝑥4 and 𝑦 = 𝑥.
In particular, since ̇𝑥 > 0 for 0 < 𝑥 < 1, the origin is unstable.

c. The equilibria at (1, 1) and (−1, −1), being nodes, have index 1. The equilibria at (1, −1) and (−1, 1),
being saddles, have index −1. The index at (0, 0) is easily found to be zero by direct examination.
For example, when 𝑥2+𝑦2 is small and non-zero, ( ̇𝑥, ̇𝑦) = (𝑦2−𝑥4, 𝑥2−𝑦4) never enters the third
quadrant, since 𝑦2 − 𝑥4 < 0 and 𝑥2 − 𝑦4 < 0 imply 𝑥2 < 𝑦4 < 𝑥8, so |𝑥| > 1. Thus the index of
a small closed curve around the origin must be zero. (Of course, the more convention argument
tracking the direction of arrows works just as well.)

d. The linearization matrix at (1, 1) has characteristic polynomial 𝜆2 − 𝑝𝜆 + 𝑞 = 𝜆2 + 8𝜆 + 12 =
(𝜆 + 4)2 − 4 = (𝜆 + 2)(𝜆 + 6), so the eigenvalues are −2 and −6. For the eigenvalue −6 we find the
eigenvector (−1, 1), and for the eigenvalue −2 we find the eigenvector (1, ).

Due to symmetry, we find that the linearization at (−1, −1) has eigenvalues 6 and 2, with eigen-
vectors (−1, 1) and (−1, 1) respectively.

The linearization matrix at (1, −1) has characteristic polynomial 𝜆2 − 𝑝𝜆 + 𝑞 = 𝜆2 − 12, so the
eigenvalues are ±2√3. Corresponding eigenvectors are (1, −2 ∓ √3).

It may be worth noting that (−2−√3)(−2+√3) = 1, so that the two eigenspaces are symmetric with respect
to the line 𝑥 + 𝑦 = 1, as they should due to the symmetry of the system.

Thanks to the symmetry in the line 𝑥 = 𝑦, the equilibrium at (−1, 1) also has eigenvalues ±2√3,
with eigenvectors (−2 ∓ √3, 1) (which may be rescaled to (1, −2 ± √3)).
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e. To get started, here is a picture showing the 𝑥- and 𝑦-
nullclines, defined respectively by ̇𝑥 = 0 (𝑦 = ±𝑥2)
and ̇𝑦 = 0 (𝑥 = ±𝑦2). The nullclines are equipped
with arrows showing the direction of the flow at
each segment. The nullclines divide the plane into
twelve regions, named A–L, and the general direc-
tion of the flow is indicated by a fat arrow in each
region.

From this diagram, it is clear that any phase path
in region A must enter either region I or B, and ap-
proach the node at (1, 1) from there. (Except one or-
bit that approaces the node along the eigenvector
(1, −1).)

Similarly, any phase path passing through region L
must come from the node at (−1, −1) and then pass
through regions K, G, L, A, I and end up at node
(1, 1). Thus all these are heteroclinic orbits. A similar argument shows that two separatrices from
the saddle point (1, −1) are also heteroclinic orbits, with the other end at (−1, −1) and (1, 1) re-
spectively. Phase paths in region G on the “wrong” side of the separatric go to infinity as 𝑡 → ∞,
and to (−1, −1) as 𝑡 → −∞. Symmetry takes care of the rest – i.e., we only need to argue the image
below the diagonal 𝑦 = 𝑥.
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Here is a computer generated phase diagram. It is of course unrealistic (not to mention unfair)
to expect every aspect to be present in a hand drawn version, but the more the merrier! The grey
curve pieces are partial phase paths. They have a circle at the start, and an arrow at the end, thus
indicating direction. Their lengths are roughly proportional to average flow speed. The stable node
is shown as a filled black circle, while the four unstable equilibria are white circles. The purple
paths are heteroclinic orbits, while the other separatrices at the saddle points are marked blue (ap-
proaching the saddlepoint) and red (leaving the saddlepoint). Separatrices at the nodes are simi-
larly marked. They are tangent to the eigenvector corresponding to the eigenvalue furthest from
zero; all other phase paths approaching the node do so tangentially to the other eigenvector.
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