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a) We have the system

HRIOES

Eigenvalues: det(A—X)=0=AA—-2)—-3=0
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Eigenvectors: 0 = (A — A)r = [ _3

:| r{,
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Figure 1: Phase diagram for x = Ax. The blue lines indicate asymptotes.
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b) Note that '
d=[xx0)] =€ if  d=AD, 0)=1.

or equivalently if
. 1
X1 = AXl, Xl(O) == |: 0 :|

%o = Axa, x2(0) = [ ) ]

By a),
X; = Clr+e>‘+t + Cyr_eMt
and hence
1 1 1
HECEIEAEN
—x0)=C| L |+0
1 = X2 I BT 2
We find that
3 1
1=C1+Cy C;=3Cy = 0121, CQIZ,
and
_ _ _ _ _ 1 - 1
Ci=-0Cy 1=-C1+ 30, = Clz—Z,CQZZ.
Conclusion:
e [ |- 1 363 4ot —e3t 4ot
© T XAT U 363t 4 36t 3t 4 3et
2
We have ( ) 4)
T | |zl 427 +yt) e
Since

Vef=fotfy=0+22+y")+222 + (1+2>+y*) +44* >0 in R?

there are no closed trajectories/cycles by Bendixson’s negative criterion.
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3

a) We consider

{ : } = f(a.y) = [ (a i)?ly v) }

Equilibrium points:

Oz[g]:f(:r,y) = y=2° and (z=yory=1)

= (ﬂf,y) € {(0’0)7 (171)7 (_171)}'

Jacobian Df(z,y) = [ 2 -1 } )

l—y —1—2+4+2y

Eigenvalues for D f(0,0) = [ (1) :1 ]:

A (0,0) is a stable spiral point

—14++/1-14 1i_\@
= -— = —— 11—
2 2 2

2

Eigenvalues for Df(1,1) = [ 0

-1 on the diagonall):
0

A =2, A=0 = (1,1) cannot be classified by linearization

Eigenvalues for Df(—1,1) = [ 702 ;1 ]:

A==+2 = (—1,1) is a saddle point.

b) The circle S with center (—1,0) and radius 2 contains the equilibrium points (—1,1)
and (0,0), but not (1,1) (and there are no other (finite) equilibrium points!). Hence, since
the system is smooth, we have that

Is=1I11)+1poo=1-1=0,
where we also used that the index of a saddle point is -1 and +1 for a spiral point.

4

Observe that the system is linear (in x and y) and can be written as

g =(A+B(t) | y | +b(t)
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where
-1 1 0 0 0 0 —e lsint
A=| -1 -1 0|, B= 0 0 et |, b= 0
0 0 0 (1+t)e® 0 0 et
A is in Jordan form with eigenvalues A = —1 £ ¢ and A = 0, hence max Re); = 0.

7
But since all eigenvalues are distinct (the 0-eigenvalue is single), the general solution and
fundamental matrix ® 4 of
X = Ax

will be bounded. Next, since [;°e™" dt < oo and [;(1+t)e™" dt < oo (integration by
parts),

| B a2 [ 500 dt < o,
0 0 2y}

By the stability theory, since ®4 is bounded and [;°||B(t)|| dt < oo, all solutions are
bounded.

Observe that because of the 0-eigenvalue of A, we could not conclude asymptotic stability
from this argument.

5

a) The flow ¢(t;2p) is the unique solution of # = f(x) and 2(0) = x9. The phase
trajectory through zq is then

Iy = {e(t;x0) : t € R},
and the w-limit set of I'y, is
wr,, ={z € R? : 3t,, such that t,, — co and @(t,;x0) — 2}.

By Poincare-Bendixson’s theorem, an w-limit set in a closed bounded subset of R?
either contains equilibrium points (i.e. it is an equilibrium point or separatrix cycle)
or it is a cycle (non-constant closed trajectory: limit cycle or ”center cycle”).

b) In both cases 7 > 0 except for r = 0 and » = 1. Hence all (finite) w-limit sets are
subsets of r =0 or r = 1.

The set r = 0 is a point — an equilibrium point (unstable node) in both cases.

The set = 1 is a limit cycle since § = 1 (no equilibrium points in r=1) in case (i),

and each point in 7 = 1 is an (unstable) equilibrium point since # = 0 in case (ii).

Since 7 > 0 away from r = 0 and r = 1, the w-limit sets are unstable.

6

By the inequality 2ab < a2 + b2,

1 1 1 3
V:x4+x2y+2y22x4—§x4—§y2+2y2:§x4+§y2,
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so V(z,y) > 0 for (z,y) # (0,0) and V(0,0) = 0.
V=VV.f=V,-fi+V,-fo
=Vo(—Va+ V) +Vy(=Ve = V)
=_V2- Vy2 = — (423 + 2zy)? — (2 + 4y)?
So V >0 and V = 0 only when z(42% 4+ 2y) = 0 and 22 + 4y = 0. If  # 0, then
422 = —2y and 2® = —4y = —16y = —2y = y =0,

and then also z = 0. Hence, V > 0 for (z,y) # (0,0). Since V(0,0) = 0 and V is
smooth, the above computation implies that V is a strong Liapunov function and that
(0,0) is asymptotically stable.

7
We rewrite the equation as a system,

R R P ) S e

We let the solutions of the two systems corresponding to € = 0 and € > 0 be (2°(¢), y"(t))
and (2°(t),y(t)) respectively, and set

a(t) = (a2(t) — (1)) + (¥°(t) — y°(1))".

By the equations (the systems'),
& = 2(2( ) (%) — () +2(y°(t) — y° () (3° () — 9°(¢))
=2(2%( ) O(t) — y° t)
+2( (t) )(fsmx — (—ey" —sina?)).

By the definition of o and since
|sinz® — sinz¢| < max | cos z||z" — z¢] < |2° — €
x

we find that
o< 2v/oo + 2ﬁ(|e|yy€\ + ﬁ)

Since |y¢(t)] < My < oo and 2ab < a? + b,
o <20+ 0+ |e]2M? 4 20 = 50 + |e|>M?.

Using an integrating factor, we obtain

d
= (e*%) — 55 — Bo) < e O M2|e[?,

and by integrating, we find that

t
e Olo(t) < o(0) + ME‘€2/ e ds
0

(My > Ms,t > s) and hence since o(0) = 0,

29(t) — 25(8)| < /o) < Mile] e5t/0 e-55 ds
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