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1 a) To find the equilibrium points, we must ensure that ẋ and ẏ are zero simulta-
neously, this means that x = y and (2− x2 − y2)x = 0, so either (x, y) = (0, 0)
or x2 + y2 = 2x2 = 2, so x = y = ±1.

Summing up, the equilibrium points are (0, 0), (1, 1) and (−1,−1).

To classify these, we look at the Jacobian

Df(x, y) =

[
2− x2 − y2 − 2x2 −2xy

1 −1

]
.

At the origin, we have

Df(0, 0) =

[
2 −2
1 −1

]
.

This matrix has eigenvalues 2 and −1, of opposite signs, so (0, 0) is a saddle
point.

At (±1,±1), we have

Df(±1,±1) =

[
2 0
1 −1

]
.

The eigenvalues are the roots λ± = 1
2

(
−3± i

√
7
)
, of the characteristic polyno-

mial of the matrix:
λ2 + 3λ+ 4 = 0.

Since both eigenvalues are complex with negative real part, both (1, 1) and
(−1,−1) are stable spirals.

b) In Figure 1, the phase diagram of the system is drawn. To do this by hand,
one would first start by drawing the directions of the eigenvectors close to each
equilibrium point.

Secondly, one looks at the isoclines

ẋ = 0⇒ x = 0 or x2 + y2 = 2

ẏ = 0⇒ y = 0

Together with the classification of the equilibrium points above, this information
is sufficient to sketch the diagram as done in the figure.

Lastly, to find the orientation, pick a point where f is particularly simple, for
instance f(0, 1) = (0,−1). This gives the orientation on the y-axis, and, by
continuity, of the entire phase plane.
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Figure 1: Phase diagram
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2 Given H, one can find a dynamical system with H as its Hamiltonian as follows:

f(x, y) :=

{
ẋ = Hy = − cosx sin y

ẏ = −Hx = sinx cos y
.

To show that (0, 0) and (π2 ,
π
2 ) are equilibrium points, we simply plug those values

into f :
f(0, 0) = (− cos 0 sin 0, sin 0 cos 0) = (0, 0),

and
f
(π

2
,
π

2

)
=
(
− cos

π

2
sin

π

2
, sin

π

2
cos

π

2

)
= (0, 0),

so both points are equilibrium points.

To classify these, we use the second derivative test.

D2H =

[
− cosx cos y sinx sin y

sinx sin y − cosx cos y

]
Evaluating at each of the points gives

D2H(0, 0) =

[
−1 0
0 −1

]
,

with determinant detD2H(0, 0) = 1, so (0, 0) is a center; and

D2H
(π

2
,
π

2

)
=

[
0 1
1 0

]
,

with determinant detD2H
(
π
2 ,

π
2

)
= −1, so

(
π
2 ,

π
2

)
is a saddle.

3 As usual, we let A denote the matrix in question:

A =

[
1 2
−4 5

]
.

We first find the eigenvalues λ of the matrix, satisfying det (A− λI) = 0:

(1− λ)(5− λ) + 4 · 2 = 0⇔ λ2 − 6λ+ 13 = 0.

This equation has solutions

λ± =
6±
√

62 − 4 · 13

2
= 3± 2i.

The eigenvector r corresponding to λ+ is found as follows:

(A− λ+I) r = 0

⇒
[
−2− 2i 2
−4 2− 2i

]
r = 0,

from which we see that r =

[
1

1 + i

]
is one possible choice.
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We can then write down a basis for solutions of the dynamical system:

v1 = <
(
reλ+t

)
= <

(([
1
1

]
+ i

[
0
1

])
e3t (cos 2t+ i sin 2t)

)
=

[
1
1

]
e3t cos 2t−

[
0
1

]
e3t sin 2t

v2 = =
(
reλ+t

)
=

[
1
1

]
e3t sin 2t+

[
0
1

]
e3t cos 2t.

Finally, the general solution is then

x = c1v1 + c2v2.

4 We see that (0, 0) is the only equilibrium point of the system.

To find its index for the system, we parametrise a closed curve surrounding it. The
simplest such curve is a circle:

C : r(t) = (cos t, sin t) , t ∈ [0, 2π).

We then have the following formula for the index:

I(0,0) = IC =
1

2π

∮
C
d

(
arctan

f2(x, y)

f1(x, y)

)
=

1

2π

∫ 2π

0

f1ḟ2 − f2ḟ1
f21 + f22

dt

=
1

2π

∫ 2π

0
2
− cos2 2t− sin2 2t

1
dt

= −2
1

2π

∫ 2π

0
dt

= −2

In this computation, we used fi(t) = f(ri(t)) and the following

f1 = cos2 t− sin2 t = cos 2t,

f2 = −2 cos t sin t = − sin 2t,

ḟ1 = −2 sin 2t,

ḟ2 = −2 cos 2t.

Note: this can also be done by drawing isoclines and using I(0,0) = WCf
.

5 (i) The matrix

A =

 0 −10 2
10 0 1
0 0 −5


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has eigenvalues −10i, 10i and −5. Since maxi<λi = 0 and all eigenvalues are
distinct, all solutions are stable.

(ii) The matrix

A =

[
−5 0
10 0

]
has eigenvalues −5 and 2. Since maxi<λi = 2 > 0, all solutions are unstable.

(iii) We write the matrix A = A0 +B, with

A0 =

−3 2 0
0 −7 0
0 0 −7

 ,
which has eigenvalues −3 and −7(with multiplicity 2).

Furthermore, B(t) has bounded integral:∫ ∞
0
‖B(t)| dt ≤

∫ ∞
0

(
e−t +

1

1 + t2

)
dt <∞.

Since maxi<λi < 0 and B has bounded integral, all solutions are asymptotically
stable.

6 The solution x(t) = φ(t;x0) is stable if for all ε > 0 there exists δ > 0 such that

|x1 − x0| < δ ⇒ ∀(t > 0) : |x(t)− φ(t;x1)| < ε.

Let x = φ(t;x0) and y = φ(t; y0) be solutions such that x(0) = x0 and y(0) = y0.

Then z = x− y solves
ż = Az, z(0) = x0 − y0,

and
z(t) = Φ(t)Φ−1(0)z(0).

This implies
|z(t)| ≤ ‖Φ(t)‖ · ‖Φ−1(0)‖ · |x0 − y0|.

By assumption, ‖Φ(t)‖ ≤ C, so

|x(t)− y(t)| ≤ C‖Φ−1(0)‖ · |x0 − y0|.

This proves that x is stable, and since x was arbitrary, all solutions are stable.

7 We try a Liapunov function of the form V = 1
2x

2 + a
2y

2, and compute its (time)
derivative:

V̇ = xẋ+ ayẏ

= 2
(
x2 + 2y2

)
xy − x4 − a

(
x2 + 2y2

)
xy − aexy2

Putting a = 2 will rid us of the complicated cross term, leaving us with

V̇ = −x4 − 2exy2,
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which is strictly negative for (x, y) 6= (0, 0) and 0 at (0, 0).

Furthermore, V is strictly positive for (x, y) 6= (0, 0) and 0 at (0, 0); and V ∈ C1.
This means that V is a strict Liapunov function for the system, which again implies
that (0, 0) is an asymptotically stable equilibrium point.

To show that the domain of attraction is all of R2, we observe that V is a strict
Liapunov function in all of R2, so that by LaSalle’s invariance principle, the domain
of attraction of (0, 0) is all of R2.

8 In this exercise, we choose Liapunov function V = 1
2

(
x2 + y2

)
, with derivative

V̇ = xẋ+ yẏ =
(
x2 + y2

)
sin
(
3x2 + 2y2

)
Looking at the sign of sin, we observe the following:

0 < 3x2 + 2y2 < π ⇒ V̇ > 0

π < 3x2 + 2y2 < 2π ⇒ V̇ < 0

3x2 + 2y2 = nπ for n ∈ N⇒ V̇ = 0

We also have the simple inequality

2
(
x2 + y2

)
≤ 3x2 + 2y2 ≤ 3

(
x2 + y2

)
.

The above implies that

0 ≤ 3
(
x2 + y2

)
≤ π ⇒ V̇ ≥ 0,

for instance: V̇ > 0 on the circle x2 + y2 = 1 ∈ (0, π3 ); and for

3
(
x2 + y2

)
≤ 2π and 2

(
x2 + y2

)
≥ π ⇒ V̇ ≤ 0,

for instance: V̇ ≤ 0 on the circle x2 + y2 = 5π
9 ∈

(
π
2 ,

2π
3

)
.

Since ∇V 6= 0 for (x, y) 6= 0, the domain

Ω :=

{
(x, y) ∈ R2

∣∣∣∣12 ≤ V (x, y) ≤ 1

2

5

9
π and x2 + y2 ≤ 2π

}
is positively invariant (and closed and bounded).

We check that (0, 0) is the only equilibrium point: if (x, y) 6= (0, 0) satisfies f(x, y) =
0, then xf2−yf1 = 0, which is equivalent to x2+y2 = 0, contradicting (x, y) 6= (0, 0).

Now Poincaré–Bendixson’s theorem implies that there exists at least one periodic
solution in Ω.

Note: the same argument using polar coordinates is similar in difficulty.

9 When |v| = 1
ε , v̇ = 0, so the domain |v| ≤ 1

ε is invariant.

Since |v0| < 1
ε , |v(t)| ≤ 1

ε for all t > 0.
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We will show uniqueness of a solution by showing that the difference in norms be-
tween any two solutions must be identically zero. So, define σ = |v1 − v2|2, and
differentiate to get

σ̇ = (v1 − v2) (v̇1 − v̇2) = (v1 − v2) (f(v1)− f(v2)) ,

where f(v) =
(
1− ε2v2

) 3
2 .

We now wish to find a bound for the second factor above, we can do this using the
definition of the derivative:

|f(v1)− f(v2)| ≤ max
|v|≤ 1

ε

|f ′(v)||v1 − v2| ≤ 3ε|v1 − v2|,

since

|f ′(v)| = 3

2
ε2|v|

(
1− ε2v2

) 1
2 ≤ 3ε2

1

ε
1 = 3ε.

This gives
σ̇ ≤ 3εσ,

which can be rewritten, using an integrating factor, as

d

dt

(
e−3εtσ

)
≤ 0.

Integrating and rearranging leads to

σ(t) ≤ e3εtσ(0),

but σ(0) = 0, so σ(t) is identically 0 for positive t.

This, in turn, implies uniqueness of solutions, which is what we wanted to show.

To see that a solution exists, observe that f(v) is globally Lipschitz continuous for
|v| ≤ 1

ε and the domain given by |v| ≤ 1
ε is invariant, so by the global extension

theorem, there is a solution for |t| ≤ T for any T > 0 implies the result for all t ∈ R.

Note: Picard–Lindelöf’s theorem implies existence for |t| ≤ min
(
T, R

max |f |

)
=

min(T,R). Since R and T are arbitrary, this means that a solution exists for t <∞.
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