
TMA4165 Differential equations and dynamical systems 2019-06-01
Solution

Problem 1

This is a linear system, whose matrix has trace 𝑝 = 1 + 4 = 5
and determinant 𝑞 = 1⋅4−6⋅9 = −50 < 0, sowehave a saddle.
The characteristic polynomial of the matrix is 𝜆2 − 5𝜆 − 50 =
(𝜆 + 5)(𝜆 − 10), and the eigenvalues are −5 and 10.

An eigenvector for 𝜆 = −5 is (3, −2), and an eigenvector for
𝜆 = 10 is (1, 1).

The dashed lines in the figure are the nullclines, defined by ̇𝑥 = 0
and ̇𝑦 = 0. They serve as a guide to slightly better accuracy. (Since
the two eigenvalues have different absolute values, the phase paths
are not hyperbolas, lacking their symmetry.)

Problem 2

a. The system is Hamiltonian with 𝐻(𝑥, 𝑦) = 1
4𝑥

4 − 𝑥2𝑦2 + 1
2𝑦

4. We
can factor this as follows:

𝐻(𝑥, 𝑦) = 1
4 (𝑥

2 − 2𝑦2)2 − 1
2𝑦

4

= 1
4(𝑥

2 − (2 + √2)𝑦2)(𝑥2 − (2 − √2)𝑦2).

The figure shows a sign diagram resulting from this, with the flow
along the lines 𝑥 = ±(2 ± 21/2)1/2𝑦 as indicated by the arrows. The
existence of invariant rays with an outward flow shows that the ori-
gin is unstable.

Alternatively we can look for solutions satisfying 𝑥 = 𝑎𝑦 for some constant 𝑎. This is natural,
since the right hand side of the system is homogeneous (of degree 3). This leads to ̇𝑥 = 𝑎 ̇𝑦, ̇𝑥 =
(−2𝑎2 + 2)𝑦3, and ̇𝑦 = (−𝑎3 + 2𝑎)𝑦3, which in turns yields the equation 𝑎4 − 4𝑎2 + 2 = 0, with
solutions 𝑎2 = 2 ± 21/2. Two of the possible values for 𝑎 give −𝑎3 + 2𝑎 > 0, making the equation
̇𝑦 = (−𝑎3 + 2𝑎)𝑦3 unstable.

b. Asymptotically stable with strong Lyapunov function 𝑉(𝑥, 𝑦) = 𝑥2 + 𝑦2. In detail:

1
2 �̇� = 𝑥 ̇𝑥 + 𝑦 ̇𝑦 = −2𝑥4 + 𝑥2𝑦2 + 𝑥3𝑦 − 𝑦4

≤ −2𝑥4 + 𝑥2𝑦2 + 1
2𝑥

2(𝑥2 + 𝑦2) − 𝑦4 𝑥𝑦 ≤ 1
2 (𝑥

2 + 𝑦2)
= − 3

2𝑥
4 + 3

2𝑥
2𝑦2 − 𝑦4

≤ − 3
2𝑥

4 + 3
4 (𝑥

4 + 𝑦4) − 𝑦4 𝑥2𝑦2 ≤ 1
2 (𝑥

4 + 𝑦4)
= − 3

4𝑥
4 − 1

4𝑦
4 < 0 for (𝑥, 𝑦) ≠ (0, 0).

c. Stable with weak Lyapunov function 𝑉(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. In detail:

1
2 �̇� = 𝑥 ̇𝑥 + 𝑦 ̇𝑦 + 𝑧 ̇𝑧 = −𝑥𝑦 − 𝑥2𝑧2 + 𝑥𝑦 − 𝑦2𝑧2 − 𝑥2𝑦2𝑧2 ≤ 0 for (𝑥, 𝑦, 𝑧) ≠ (0, 0, 0).

The system is not asymptotically stable, for the plane 𝑧 = 0 is invariant, and the flow there is simple
rotation around the origin.
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Problem 3

To find the equilibrium points, insert 𝑥 = 1 − 𝑦 from the equation ̇𝑦 = 0 into the equation ̇𝑥 = 0,
resulting in 𝑦2 + 𝜇𝑦 − 𝜇 = 0. Thus we get the two solutions (𝑥±, 𝑦±) where

𝑦± = 1
2(−𝜇 ± √𝜇2 + 4𝜇) and

𝑥± = 1 + 1
2(𝜇 ∓ √𝜇2 + 4𝜇)

} when 𝜇 ≥ 0 or 𝜇 ≤ −4.

(The two solutions coincide when 𝜇 = 0 or 𝜇 = −4. There are no solutions when −4 < 𝜇 < 0.)

𝜇

𝑥

sta
ble
no
de

saddle

sad
dle

unstable node,
spiral, then
node again

The saddle–node bifurcations aremarked with filled cir-
cles; the transitions between node and spiral are marked
with open circles.

The bifurcation diagram is shown on the right.
The calculations leading up to it are as follows.

The matrix of the linearisation at each equilib-
rium point is

(𝜇 −2𝑦±
1 1 ) .

Its trace is 𝑝 = 𝜇 + 1, and its determinant is 𝑞± =
𝜇 + 2𝑦± = ±√𝜇2 + 4𝜇. Thus (𝑥−, 𝑦−) is a saddle
point.

To analyse (𝑥+, 𝑦+), note that it will be a node if
𝑝2 > 4𝑞+. This is equivalent to (𝜇 +1)4 > 16(𝜇2+
4𝜇). That is true at 𝜇 = 0 and 𝜇 = −4, where the
right hand side vanishes. Therefore, it is also true
for 𝜇 sufficiently close to those values. It turns out
to hold for all 𝜇 < −4, and for 𝜇 > 0 except for
𝜇 ∈ [0.017, 3.55] (approximately). In the interior
of the named interval, we get a spiral instead. The
node or spiral is unstable when 𝜇 > 0 and unstable when 𝜇 < −4.

Due to a miscalculation while putting the exam together, this detail turned out much too hard for hand
calculation.1 Needless to say, this will be taken into account while grading.

To sum it up, the system has two saddle–node bifurcations, one at 𝜇 = 0 and one at 𝜇 = −4.

For the bifurcation diagram, substitute 𝑦 = 1−𝑥 (from ̇𝑦 = 0) into 𝜇𝑥 = 𝑦2 (from ̇𝑥 = 0) to get 𝜇𝑥 = (1−𝑥)2.
Rewrite as 𝑥2 − (𝜇 + 2)𝑥 + 1 = 0 and complete the square to get (𝑥 − 𝜇

2 − 1)2 − (𝜇2 − 1)2 + 1 = 0 This is the
equation of a hyperbola with asymptotes 𝑥 − 𝜇

2 −1 = ±(𝜇2 +1), i.e., 𝑥 = 0 and 𝑥 = 𝜇 − 2 (the light blue line
in the diagram). You may prefer instead to write the equation in the form 𝜇 + 2 = 𝑥 + 1/𝑥.

Problem 4

(𝑋, 𝑌)

(𝑋, �̃�)

As the figure indicates, the angle between the two vector fields is
less than 𝜋/2, because (𝑋, �̃�)must lie within the circle shown.

Thus, if 𝜑 is the continuously varying angle between the 𝑥 axis and
(𝑋, 𝑌), and similarly for �̃� and (𝑋, �̃�), then |𝜑−�̃�| < 𝜋/2 everywhere
on Γ. (Strictly speaking, we can choose the angles so that this holds
initially, and then it will remain true along Γ by continuity.)Writing
Δ𝜑 for the total change in 𝜑 along Γ, similarly for Δ�̃�, it follows that
|Δ𝜑 − Δ�̃�| < 𝜋. Since both Δ𝜑 and Δ�̃� are integer multiples of 2𝜋,
the difference must be zero, so the two indices are the same.

1Thanks to Øyvind Steensland, who pointed out the mistake in an earlier version of the solutions.
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Problem 5

a. The equilibrium points are (0, 0), (1, 1), (−1, −1), (1, −1) and (−1, 1).

On a large circle centred at the origin, ( ̇𝑥, ̇𝑦) can never enter the first quadrant: For if ̇𝑥 > 0 and
̇𝑦 > 0 then 𝑥2 > 𝑦4 > 𝑥8, implying that |𝑥| < 1, and similarly |𝑦| < 1. Therefore the index of the
large circle is zero, and therefore so is the sum of indices of the equilibrium points within.

b. The reflection through the line 𝑥 = 𝑦 maps (𝑥, 𝑦) to (𝑦, 𝑥). If (𝑥(𝑡), 𝑦(𝑡)) is a solution, then so is
(𝑦(𝑡), 𝑥(𝑡)). Thus one phase path is mapped to the other, with orientations preserved.

The reflection through the line 𝑥 + 𝑦 = 0maps (𝑥, 𝑦) to (−𝑦,−𝑥). If (𝑥(𝑡), 𝑦(𝑡)) is a solution, then
so is (−𝑦(−𝑡), −𝑥(−𝑡)). Thus one phase path is mapped to the other, with orientations reversed.

c. The linearisation of the system at each equilibrium point (𝑥, 𝑦) is given by the matrix

𝐴 = ( 2𝑥 −4𝑦3
−4𝑥3 2𝑦 ) .

At the equilibrium (0, 0), all entries of 𝐴 are zero; hence this equilibrium defies simple classifica-
tion.

At the equilibrium (1, 1),

𝐴 = ( 2 −4
−4 2 ) .

Its trace is𝑝 = 4, and its determinant is 𝑞 = −12 < 0, hence (1, 1) is a saddle point. The eigenvectors
are (1, 1), with eigenvalue −2, and (1, −1), with eigenvalue 6.

The equilibrium at (−1, −1) is also a saddle point, and the eigenvectors are (1, 1), with eigenvalue
2, and (1, −1), with eigenvalue −6. (This follows by the symmetry around the line 𝑥 + 𝑦 = 0, or a
similar computation as the one above.)

At the equilibrium (1, −1),

𝐴 = ( 2 4
−4 −2) .

Its trace is 𝑝 = 0, and its determinant is 𝑞 = 12. Hence the linearisation is a centre. As stated in
the problem, this together with the symmetry around the line 𝑥 + 𝑦 = 0 implies that the point is a
centre for the full system. The rotation direction is clockwise.

The equilibrium (−1, 1) is also a centre, by the symmetry around the line 𝑥 = 𝑦. The rotation
direction is counterclockwise.

The equilibria at (1, 1) and (−1, −1), being saddle points, have index −1.

The equilibria at (1, −1) and (−1, 1), being centres, have index +1.

Since the sum of all indices is 0, and the indices computed above have sum 0, the remaining equi-
librium (0, 0) has index 0 as well.

The equilibrium at the origin is unstable. This is most easily seen by noting that if 𝑥 solves ̇𝑥 =
𝑥2−𝑥4, then (𝑥(𝑡), 𝑥(𝑡)) is a solution of the full system. In particular, any solution starting at (𝑥, 𝑥)
with 𝑥 > 0 and 𝑥 ≈ 0 will follow the diagonal to (1, 1).
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d. To get started, here is a picture showing the 𝑥- and 𝑦-
nullclines, defined respectively by ̇𝑥 = 0 (𝑥 = ±𝑦2)
and ̇𝑦 = 0 (𝑦 = ±𝑥2). The nullclines are equipped
with arrows showing the direction of the flow at
each segment. The nullclines divide the plane into
twelve regions, named A–L, and the general direc-
tion of the flow is indicated by a fat arrow in each
region.

The region named in the question, { (𝑥, 𝑦) | −𝑦2 <
𝑥 < 0 and − 𝑥2 < 𝑦 < 0 }, is the one labeled F. The
stated property on unbounded forward phase paths
is important in drawing the phase diagram, because
it implies that no trajectory can escape to infinity
within either of the regions A or C. By the symme-
try about 𝑥 + 𝑦 = 0, no trajectory escapes to infinity
going backward in time from regions E or G. The other unbounded regions are easier to deal with:
In particular, any trajectory in region D must continue into region E, and from there further into
F, K, or J (except for some separatrices converging to (−1, −1) or the origin).

This picture is computer generated. It is of course unrealistic (not to mention unfair) to expect
every aspect to be present in a hand drawn version, but the more the merrier!

The grey curve pieces are partial phase paths. They have a circle at the start, and an arrow at the end, thus
indicating direction. Their lengths are proportional to average flow speed. The two stable equilibrium points
(centres) are filled black circles, and the three unstable ones are white circles. Special orbits – separatrices –
are colour coded: They are four heteroclinic and two homoclinic orbits, plut stable and unstable manifolds
of the saddles at (1, 1) and (−1, −1) respectively. The heteroclinic and homoclinic orbits exists largely due
to the symmetries of the system.

The nullclines are also included for reference.
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