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Item (d) justifies calling P the projection upon A. Now check that A inherits
the separability of L2(Q).

EXERCISE 14. Show that the family f,: n> 1 spans L2(Q) iff (f,.f,) =0
for every n 2 | implies f=0. Hint: What is the annihilator of the family
Sarnz11

EXERCISE 15. Show that any linear map / of L*(Q) into the complex
numbers which is bounded in the sense that

[1(f)] < constant x || f

where the constant is independent of f, can be expressed as an inner product:

1) =(/9)

for some ge L2(Q). This is the so-called Riesz representation theorem.
Hint. Suppose /#0 and let A =(f:/(f)=0). Check that B= A® is of
dimension 1 and find a function ge L2(Q) so that I(f)=0 iff (f,g)=0.
Then

I(f) = |gll=21(g) (f,9) = constant x (,g).
Why?

There are many excellent books on Hilbert space; among the best at an
advanced level are Akhiezer and Glazman [1961-1963] and Riesz and
Sz.-Nagy [1955]; at an elementary level, Berberian [1961] is recommended.

1.4 SQUARE SUMMABLE FUNCTIONS ON THE CIRCLE
AND THEIR FOURIER SERIES

Attention is now focused on the space L*(S’), where S! is a unit circular
circumference. This may be thought of as the interval 0 < x <1 with the
endpoints 0 and 1 identified, and you may think of functions on S* as periodic
functions on R! of period !, so that f(x+1)=f(x). A function f is con-
tinuous on the circle only if f(0)=/(0+)=/f(1)=f(1-). You can also
picture the circle as the interval —3 < x <} with identification of end-
points; this attitude will be helpful occasionally. The space L*(S') is the
Hilbert space of (complex) measurable functions f on S! with

T ( [ w)"’ <o
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The inner product is
1
o = [ 50,

and there is a self-evident isomorphism with L?[0,1]. The space C"(S')
of n(< o0) times continuously differentiable functions on the circle will
also come into play, as well as the space C*(S") of infinitely differentiable
functions. The space C®(S?) is dense in L*(S') by Exercise 1.2.11. The
space C°(S')= C(S") is just the space of continuous functions; for such
functions, the new length

1/l = max |f(x)]

is often convenient. The subscript co will distinguish this notion of length

from "
Mm=(Lmj’<wh.

THEOREM 1. The unit-perpendicular family
e,,(x) = eannx’ ne Zl

of Example 1.3.1 is a basis for L2(S"), that is, any function fe L*(S") can
be expanded into a Fourier series

=3 e,

n= —

with coefficients
Jo) = (fe) = flfe * = f'f(x)e—2ninxdx
y¥n o n o y

the sum being understood in the sense of distance in L*(S'). By Theorem 1.3.3,
the map f— f is therefore an isomorphism of L*(S*) onto L2(Z') [see Exercise
1.2.13], and there is a Plancherel identity:

= [ =wr - $ e

n=m —

Warning: Until further notice e, will always mean e*™"=: and *“‘Fourier
series™ will refer to this particular family!

EXERCISE 1. 1,/2cos2mnx:n21, and 2sin2anx:n>1 form a
unit-perpendicular family in L2(S'). Check this and deduce that the
{complex) Fourier series for f can also be expressed in the real form

S = Frea0) + il [rven (7) /2 €OS 20X + fogq () /2 sin 27nx],
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with coefficients

1
Foun® = [ 1051,
-
Seven(n) = \/2f fx)cos2nnxdx, n2z1,
0

Joga() = \/Eflf(x) sin2nnxdx, nx=1.
0

The key step in proving that the exponentials e,: n € Z! span L2(S') is to
check that the Fourier series of a smooth function f actually converges
(to f1). This is the content of the following theorem.

THEOREM 2. For any 1 <p < oo and any fe CP(S"), the partial sums
Sn = Sn(f) = Z f(k)ek
lki<n

converge to [, uniformly as nco; in fact, |S,—f ., is bounded by a constant
multiple of n=?**%,

Amplification: The bound on |S,—f| . indicates that the speed of con-
vergence of a Fourier series improves with the smoothness of f. This reflects
the fact that /ocal features of f (such as smoothness) are reflected in global
features of f (such as rapid decay at n = 4 c0). This local-global duality is
one of the major themes of Fourier series and integrals, as you will see later.

PROOF (for p=1). Bring in the so-called Dirichlet kernel
Dy(x) = 3, e(x) = Z etnikx

tki<n tkl<n

= e-2nlnx Z eZnikx

k=0
2ri(2n+1)x _
— e—-ZRInxe 1
- edmix _ 1
sine(2n+1)x
sin ntx

with the understanding that D,(0) = (2n+ 1), and note that you obtain the
value of the forbidding-looking integral

J‘ j“smn(Zn-H)x
sinnx x
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1 1
f D,l = Z f ek = l.
(1] ki< JO

The introduction of D, is motivated by the desire to express S, in a more
transparent way:

1
5,00 =3 JRe® =3 e f S e* () dy
|kl <n lki<n 0

as a fringe benefit:

I

=f Y e(x—y)f(p)dy
0 |kjsn
1

= L D, (x=3) f) dy

+
=£ﬂﬂwQMW-

To achieve the final expression, make the substitution y—x-+y, and use
the fact that D, is even:

1-x

] l=-x
L D, (x— ) f(y) dy = f Fean D= dy = [ Fx49) Da() dy;

-X
then notice that f(x+ -)D, is a periodic function of period 1, so that you
can replace the integral over —x < p < | —x by the integral over any period
you like, for example, —4 < x< 3.

The problem of verifying that S, is a good approximation to f can now be
better understood with the aid of a picture of D,; see Fig. 1 for a sketch of
Dg. The peak tends to co with n. At the same time, the oscillations to either
side become increasingly rapid, and while they do not die away, you can

De

/\

;Vf\vl\\/\ J \-/[\U/\Ur\vr.vz .

-1/2
FIGURE 1
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hope that they will, on the average, knock each other out, with the result

that the major contribution to the integral comes from a small neighbor-

hood of y = 0. The plan is to take (indirect) advantage of this phenomenon.
To begin with, since fe C'(S?"),

1 1
e = [ rer = = [ s = 2minfn
by partial integration. Therefore, by the inequalities of Schwarz and Bessel,
if n<n' < oo, then

1S, =Sl < ¥ 1f(0)] = ; [/~ ()l 2k~
{k}>n {k|>n

7 23
S( > |(f')"(k)|2) (Z (Zﬂk)'z)
IK/> n K3
< [f’l; % a constant multiple of n™ %,

This shows that S, converges uniformly, at the advertised speed, to some-
thing. The only question is: to what?

Because
b4
f D,=1,
~¥

the discrepancy between f and the partial sum can be expressed as

1
5,09 =109 = [ Utx+) =01 0,0 dy

§
= [ ety sinn@n+y @,
-1
with the understanding that

Q(x,y) = [f(x+y) - f(x)]fsinny
stands for 77" f*(x) at y =0. Fix =} <x<}. As a function of -3 <y <14,
O belongs to L2[—4,4), and

2niny enly —e” 2niny e~ iy

%
5.09-109 = [ 0’ =

= (271N (=n) = (2)7H(@7) ()
in which Q* = Qexp(+niy). By a second application of Bessel’s inequality
25 > < [2l3 < o,

so (Q*)*(n) approaches 0 as |n|foo, and lim,,,, S, = f for each fixed —} <
X < 4, separately. Now make n’Too in the preceding estimate for |S,—S,|
to verify that ||S,—f |, is bounded by a constant multiple of n~*. This
completes the proof for the case p= 1.
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EXERCISE 2. Finish the proof of Theorem 1. Hint: The space C'(S')
is dense in L*(S") by Exercise 1.2.11,

EXERCISE 3. Finish the proof of Theorem 2 for 2<p <. Hint:
(f)*(n) = 2ninf (n).

EXERCISE 4. Check that fe C*(S") iff f is rapidly decreasing in the
sense that n?f(n) approaches 0 as |n|co for every p < oo, separately. Hint:
For rapidly decreasing f, 3 f(n)e, converges uniformly to a periodic func-
tion f;, and

L “fo = Y70 L “er = Y70 [en(0) - (0)] = fx) - 1(0).

The pointwise convergence of the Fourier series of a function from L*>(S')
is a very complicated business in general. Carleson [1966] proved that it
must converge a.e., but there are examples with fe C(S') in which the
sum diverges at uncountably many points. The situation for summable
functions [{§|/] < o] is even more horrible; the most famous example is
that of Kolmogorov [1926] in which the sum diverges everywhere! The
proofs by Carleson and Kolmogorov are complicated and cannot be pre-
sented here; in fact, these remarks are merely meant to point out the very
attractive simplicity of the following result of Fejér [1904].

THEOREM 3. For functions f of class C(S'), the arithmetic means
n~t(So+ -+ +S,-y) of the partial sums S, =Y, <, J(k) e, converge uniformly
to f.

EXERCISE 5. Check that the arithmetic means n™ ' (xo+ -+ +x,-,) of
the numerical series xo, x,, ... converge to y if lim,,,, x, = y. Give an example
to show that lim,; ,n™ ' (xg+ -+ +x,-,) can exist even if lim,; ,, X, does not.

PROOF OF THEOREM 3. The proof makes use of the arithmetical
means of the Dirichlet kernel:

1
Fo(x) = ;(Do'*‘"""D..—l)

1 sinnk+1) x

nz sin x

k=0

1 {sinnnx |?
nl sinmx |
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EXERCISE 6. Check the summation. Hint: Think of sinn(2k+1)x
as the imaginary part of the complex exponential and sum the resulting
geometrical series.

F, is the so-called Fejér kernel. Note for future use that F, is nonnegative
and that

} [
f F,,=n"1 Z Dk = l.
-4 k=0 J~-4%

The proposal is to check that the discrepancy
n—1 a-1 r¥
n T S@ =0 =t T [ S D) by - S
k=0 k=0J-t
i
- [ 1eenEi a0

¥
- f LG+ = [T B () dy

is uniformly small. This is much easier for the present Fejér kernel F, than
it was for the Dirichlet kernel D, since now the tails are small for large n
and not just negligible due to rapid oscillation; see Fig. 2 for a sketch of Fj.

To make the actual estimates pick a small positive number é <4 and
divide the interval of integration into two parts according as |y} <d or
|| = 8. The first piece is bounded as follows:

J;yl<6

]
< f R ~ S EO) dy

< max max |f(x+y) —f(x)| . 6F,.(y) dy
Y=<

Iyi<d Ixjs}
< max -
< max |/, ~f o,

in which f, is the translated function f,(x) = f(x+y). This can be made as
small as you please by making 8]0, since f is uniformly continuous. As to

the other piece,
4 t [sinnnx|?
[ <t [ ]dx
LY n F] sinntx

2 . -
<> Gin0) ™ |/,
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-i/72 1/2

FIGURE 2

and this can be made small for fixed 0 < <4 by making n large enough.
The proof is finished.

EXERCISE 7. Check that for any fe L*(S")

1 k !
lﬁT;;fG‘L;) =f(0) = Lf

in the sense of distance in L2(S*). Hint: Compute the Fourier coefficients
of the sum and use the Plancherel identity.

EXERCISE 8. Check that for any fe C(S') and 0<r<1,
1 |
Siee, = [
o

1 —2rcos2n(x—y)
Hint; Express f(n) as an integral and bring the sum under the integral
sign.

" rzf(y) dy.

EXERCISE 9. Use Exercise 8 to prove the following variant of Theorem
3: For fe C(SY),

]’ITIP “ Zf(n)rl"len _f"co = 0.

The fact goes back to Poisson; the formula of Exercise 8 is known by his
name. Hint:

! 1-r? - .
J; l-—2rcos2ny+r2dy = Ziere,© = 1.
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1.5 SUMMABLE FUNCTIONS AND THEIR FOURIER SERIES

The next topic is the space L'(S!) of (complex) summable functions on
the circle. This space, or more generally, the space L'(Q) of summable
functions on an interval Q, is provided with a length

171, = fo /] = fa /() d,

permitting you to define a distance much as for L?(Q). Clearly, the triangle
inequality,

I/+al, = fg el < fo 1+ fQ 19l = 171, + ol

is satisfied, so that L'(Q) is closed under addition of functions, and it goes
without saying that it is also closed under multiplication by complex numbers.

Technical point: The reader should bear in mind that, just as for L*(Q)
the things that live in L!(Q) are actually equivalence classes of functions;
especially, you identify f with the 0-function if f=0 a.e. so as to make f=0
iff | f], =0. As before, it is simpler, and not at all confusing, to ignore this
point most of the time and to speak of f'e L' (Q) as a function.

EXERCISE 1. Check that the space L'(Q) is not a Hilbert space. Hint:
In any Hilbert space |ja+B]?+ la—B|I* = 2j«> +2[Bl|>. Try this out for
0 =[0,1], a= 1, and f = x. What happens? Try again.

EXERCISE 2. Show that the space L!(Q) is complete and separable. The
definitions are as for L2(Q), but relative to the distance of L!'(Q). Hint: The
proof for L?(Q) is easily adapted from Section 1.2 with minor changes only.

EXERCISE 3. Show that the class of compact functions belonging to
C®(Q) is dense in L'(Q). Hint: See Exercise 1.2.11. There is an inclusion
between L'(Q) and L*(Q) if Q is bounded: Namely, by Schwarz’s inequality,

2
2 _ 2| y2 _ g2
T —( e 1) <[] 1 = 1im@.

so that L2(Q) is included in L'(Q). In particular, this holds for functions
on the circle, so that everything to be proved later about Fourier series of
summable functions on the circle also holds for functions of class L*(S?).

EXERCISE 4. Check by example that the inclusion of L2{0,1] in
L' [0, 17 is proper, that is, find a summable function f with [} |f]? = c0.
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EXERCISE 5. Check by examples that neither L'(R') nor L2(R') is
included in the other.

EXERCISE 6. Show that any linear map / of L'(Q) into the complex
numbers, subject to |/(f)| < constant x | f]|;, with a constant independent
of f, can be expressed as /(f) = |, fg* for some bounded measurable func-
tion g. Hint: L}(Q) = L'(Q) if @ is bounded. Now use Exercise 1.3.15 to
find such a function g € L2(Q) and check that [7|g| < constant x (b—a) for
any interval a < x <b.

Given fe L'(S'), the function fe,* is summable, so you can set up a
(formal) Fourier series for f by the customary recipe:

f=X]me,

with coefficients
1 |
fo = [ eir = [ sy,
0 0
The principal fact about such Fourier series is contained in

THEOREM 1. The arithmetical means n~'(Sg++--+S,_,) of the partial
sums S, =3 141 <n f(k)e, converge to f in the sense of distance in L'(S'):

lim I~ (So+-+8,-)=f1, = 0;
nfxo
in particular, the map f-f is 1:1,

PROOF. The discrepancy between n~'(Sp+:-+S,-;) and f may be
expressed by means of Fejér's kernel F,, as in the proof of Theorem 1.4.3:

b
N (Sot ot Sy) —f = L[f(x+y)—f(x)]ﬁ?.(y)dy,

and the length of the discrepancy can be bounded as follows:
¢ $
I~ oo+ 8D =11 < [ e [ e —f0l )
Y/ord
- [ ([} vessn=seot ) mn s

b
~ f =L EO) dy,

in which f, is the translated function f,(x) = f(x+y). The rest of the proof
runs parallel to that of Theorem 1.4.3. The only new ingredient is contained in
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EXERCISE 7. Show that the map f—f, is continuous in the distance
of L'(S"), i.e.,
lim | /,=/1, = 0.

Hint: | f,—fli <|f,—fl« for f from C(S') and the latter is dense in
LS.

The Fourier coefficients of a summable function /' do not satisfy

IO < w;
that happens only if fe L%(S"), but they are bounded:
i I
ool = | [ e < 101 =171

This crude estimate is much improved upon by the so-called Riemann-
Lebesgue lemma:

THEOREM 2. The Fourier coefficient f(n) of any function fe L' (S") tends
to 0 as |n|teo.

PROOF. f(n)={fe,* can also be expressed as

1
fn) = —Lf(x)exp[—Znin(x-—Qn)")] = — {;lf(x+(2n)")e,,"'(x) dx,

since e™ = —1. Now average the two expressions for f(n):

Jm) = 4 f e () dx— 4 f e+ (2n) VY et (x) dx

~3 L L) = £+ 20y Y] e () dx

and estimate as follows:

I
el < 4 [ 1760 —fx+@n ) dx = $7~Fiaal -
By Exercise 7, this approaches 0 as |n| 1 co. The proof is finished.

An important application of the Riemann-Lebesgue lemma is to verify
that the /ocal convergence of the Fourier series of a summable function
depends only upon the Jocal behavior of the function. This is the content of

)
THEOREM 3. Take fe L'(S") vanishing near x =0. Then S, approaches
0 as nt oo, uniformly near x =0.
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Amplification: Obviously, the point x =0 is in no way special; in fact,
if f and g are summable functions and if f=g near some fixed point x, of
the circle, then their partial Fourier sums behave in the same way in the
vicinity of xq: Namely, S,(f)—S,(g)=S,(f—g) tends to O uniformly,
near Xx,.

PROOF OF THEOREM 3. Suppose that f=0 for |x| < and express
the partial sum S, by means of the Dirichlet kernel of Section 1.4:

i in(2n+1
5,09 = [ foeen I gy,

Because f(x+y) =0 if both |x| and |y| are < J/2, the functions
Slx+y)et™
£ AL LA
Uty 2isinzy
are summable if |x| < 8/2, and therefore

[ty eet () —e M ex(y)
Salx) = J:; sin my 2i dy

=) (= -()"M)
tends to 0 as 7 co for any fixed |x| < §/2, by the Riemann-Lebesgue lemma.
At the same time, for any |x,| <4/2 and |x,| < §/2,

dy

. sin(2n+ 1) ny|
S, =Siexl < [ e = s e R

Coad\"!
S(sm7> =ruls

- (s03) 1511,

for y=x,—x,. By Exercise 7, this makes S, continuous for |x|< /2,
uniformly in n, and a moment's reflection will convince you that this forces
the convergence of S, for |x| < /2 to be uniform. The proof is finished.

EXERCISE 8. Dini’s test states that if fe L' (S') and if for fixed |x| < 4,
the function y~'[f(x+y)—f(x)] is summable, then lim,,S,(x)=/f(x).
Prove it, Hint: Use the Dirichlet kernel and the Riemann—~Lebesgue lemma,
as earlier.

A new feature of summable functions now comes into play: The space
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L'(S!) is an algebra under the multiplication defined by the ““convolution”
product

1
feg = Lf(x—y)g(y) dy.

For fixed 0< x < 1, the product f(x—+)g may be nonsummable, so it is
necessary to check that fog makes sense. To do this with all the proper
technical flourishes, look first at the plane integral

1 1
1= L L | fCe—=y)g ()] dx dy.

The integrand |f(x—y)g(»)| is a nonnegative (plane) measurable function,
so the integral makes sense [/ < co], and by Fubini’s theorem, you can
evaluate it as an iterated integral:

! t
1= [leoa [ x-piax = o1 [[171= 171001 < 0.

Fubini is used once more to conclude from

1 H
1= L de =) g dy <

that f(x— -)g is summable for almost every 0 < x < 1. Thus, fog(x) is given
by an honest Lebesgue integral for almost every 0<x<1! and is itself a
(periodic) summable function:

Ifogl < T=1fl:lgl < .
This kind of finicky proof is not very interesting, but it is important to

understand precisely what is involved.

EXERCISE 9. Check that the product fog is associative and com-
mutative, putting in all the technical details.

EXERCISE 10. Check that L2(S') is an ideal in L'(S'). This means
that fog belongs to L*(S') as soon as one of the factors does.

EXERCISE 11. Check that the Dirichlet and Fejér formulas for partial
sums can be expressed as
Sn = f° Du
and

" (Sot e+ 5,my) = S0 .
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A pretty interplay takes place between the product fog and Fourier series,
stemming from

feg) =J4;

this simple formula plays a very important role in applications, as you will
see later.

PROOF. By Fubini’s theorem,

1 1
(fo )™ () = L [ ﬁ Fx=19() dy] e (x) dx
1 rt
- f f Sy e* (= 1) g () e () dx dy
0 JO

1 ]
- f g er ) dy[ f Sy e (x—) dx]
(1] (1]

- Lo [
=J(mg(n).

EXERCISE 12. Check that L'(S') does not have a muitiplicative
identity. Hint: A multiplicative identity e would satisfy eof = f. Now look
at 2 keeping the Riemann-Lebesgue lemma in mind.

EXERCISE 13. Define " to be the n-fold product fo.-.of of a summable
function f. Prove that

lnig(llf"lh)”" = | /]l = max |fm)l,

under the extra assumption that f belongs to L2(S').! Hint: The fact that
II/llo does not exceed the left-hand side is self-evident. To finish the proof
use

1 = ff“{exp[iarg(f"m* = ¥ /" {expliarg(/]}*.

The map f—f maps L2(S?) onto L2(Z"), and
Iz = "]"z = (ZI]IZ)V’ < .

The situation for L'(S!) is very much more complicated. The information

! For a proof of this formula without the extra assumption see, for example, Edwards
{1967, article 11.4.14).
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at hand about the class A of Fourier coefficients f of summable functions
may be summarized as follows:

(a) A is populated by bounded functions f:
1712 = B/ < 171
(b) f=0iff f=0,ie., A isa l:1 map.
© f=0at +o0, ie., lim,,,“wf(n) =0.
(d) A is an algebra: namely,
(Jo) () = f(mg(n) = (fog)*(n).

Unfortunately, (a) and (c) do not suffice to single out precisely which
functions f arise as Fourier coeflicients of summable functions. The situ-
ation is thus entirely different from L*(S') where the condition

1712 = (X171%)% < w0

is decisive. The best information currently available indicates that A does
not have any neat description.

EXERCISE 14. Check that the class B of summable functions J is a sub-
algebra of A. The adjective “summable” means that ||, = 3 |/(n)]| < .

EXERCISE 15. Check that BY =(f=3 f(n)e,: fe B) is a subalgebra
ofp(S') under the ordinary multiplication of functions. Hint: (fg)"(n)=
2 flin—k) g (k).

A celebrated theorem of Wiener [1933, p. 91] states that if fe B" is root-
free [ f'# 0], then also 1/fe BY. A wide variety of fascinating and delicate
results about A and B have been obtained since that date: the advanced
student will find a nice account in Edwards [1967].

1.6* GIBBS' PHENOMENON

Thus far, the object has been to show how well Fourier series converge.
Gibbs’ phenomenon has to do with how poorly they converge in the vicinity
of a jump of /. The statement is that in the vicinity of a simple jump of the
function f; the partial sums S, always overshoot the mark by about 9%. This
fact was pointed out by Gibbs in a letter to Narure [1899]. (Actually Gibbs'
phenomenon was first described by the British mathematician Wilbraham
[1848]; see Carslaw [1925] for the history.) The function Gibbs considered



