Item (d) justifies calling P the projection upon A. Now check that A inherits the separability of $L^2(Q)$.

EXERCISE 14. Show that the family $f_n: n \ge 1$ spans $L^2(Q)$ iff $(f, f_n) = 0$ for every $n \ge 1$ implies $f \equiv 0$. Hint: What is the annihilator of the family $f_n: n \ge 1$?

EXERCISE 15. Show that any linear map l of $L^2(Q)$ into the complex numbers which is bounded in the sense that

$$|I(f)| \leq \text{constant} \times ||f||$$

where the constant is independent of f, can be expressed as an inner product:

$$l(f) = (f,g)$$

for some $g \in L^2(Q)$. This is the so-called *Riesz representation theorem*. Hint. Suppose $l \not\equiv 0$ and let A = (f: l(f) = 0). Check that $B = A^0$ is of dimension 1 and find a function $g \in L^2(Q)$ so that l(f) = 0 iff (f,g) = 0. Then

$$l(f) = ||g||^{-2} l(g)(f,g) = \text{constant} \times (f,g).$$

Why?

There are many excellent books on Hilbert space; among the best at an advanced level are Akhiezer and Glazman [1961-1963] and Riesz and Sz.-Nagy [1955]; at an elementary level, Berberian [1961] is recommended.

1.4 SQUARE SUMMABLE FUNCTIONS ON THE CIRCLE AND THEIR FOURIER SERIES

Attention is now focused on the space $L^2(S^1)$, where S^1 is a unit circular circumference. This may be thought of as the interval $0 \le x \le 1$ with the endpoints 0 and 1 identified, and you may think of functions on S^1 as periodic functions on R^1 of period 1, so that f(x+1)=f(x). A function f is continuous on the circle only if f(0)=f(0+)=f(1)=f(1-). You can also picture the circle as the interval $-\frac{1}{2} \le x \le \frac{1}{2}$ with identification of endpoints; this attitude will be helpful occasionally. The space $L^2(S^1)$ is the Hilbert space of (complex) measurable functions f on S^1 with

$$||f|| = ||f||_2 = \left(\int_0^1 |f|^2\right)^{1/2} < \infty.$$

The inner product is

$$(f,g) = \int_0^1 fg^*,$$

and there is a self-evident isomorphism with $L^2[0,1]$. The space $C^n(S^1)$ of $n(<\infty)$ times continuously differentiable functions on the circle will also come into play, as well as the space $C^{\infty}(S^1)$ of infinitely differentiable functions. The space $C^{\infty}(S^1)$ is dense in $L^2(S^1)$ by Exercise 1.2.11. The space $C^0(S^1) = C(S^1)$ is just the space of continuous functions; for such functions, the new length

$$||f||_{\infty} = \max_{0 \leqslant x < 1} |f(x)|$$

is often convenient. The subscript ∞ will distinguish this notion of length from

$$||f||_2 = \left(\int_0^1 |f|^2\right)^{1/2} \le ||f||_{\infty}.$$

THEOREM 1. The unit-perpendicular family

$$e_n(x) = e^{2\pi i n x}, \qquad n \in \mathbb{Z}^1$$

of Example 1.3.1 is a basis for $L^2(S^1)$, that is, any function $f \in L^2(S^1)$ can be expanded into a Fourier series

$$f = \sum_{n = -\infty}^{\infty} \hat{f}(n) \, e_n$$

with coefficients

$$\hat{f}(n) = (f, e_n) = \int_0^1 f e_n^* = \int_0^1 f(x) e^{-2\pi i n x} dx,$$

the sum being understood in the sense of distance in $L^2(S^1)$. By Theorem 1.3.3, the map $f \rightarrow \hat{f}$ is therefore an isomorphism of $L^2(S^1)$ onto $L^2(Z^1)$ [see Exercise 1.2.13], and there is a Plancherel identity:

$$||f||_2^2 = \int_0^1 |f|^2 = ||f||^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2.$$

Warning: Until further notice e_n will always mean $e^{2\pi i n x}$; and "Fourier series" will refer to this particular family!

EXERCISE 1. $1, \sqrt{2}\cos 2\pi nx$: $n \ge 1$, and $\sqrt{2}\sin 2\pi nx$: $n \ge 1$ form a unit-perpendicular family in $L^2(S^1)$. Check this and deduce that the (complex) Fourier series for f can also be expressed in the real form

$$f = \hat{f}_{\text{even}}(0) + \sum_{n=1}^{\infty} \left[\hat{f}_{\text{even}}(n) \sqrt{2} \cos 2\pi n x + \hat{f}_{\text{odd}}(n) \sqrt{2} \sin 2\pi n x \right],$$

with coefficients

$$\hat{f}_{\text{even}}(0) = \int_{0}^{1} f(x) \, dx \,,$$

$$\hat{f}_{\text{even}}(n) = \sqrt{2} \int_{0}^{1} f(x) \cos 2\pi nx \, dx \,, \qquad n \geqslant 1 \,,$$

$$\hat{f}_{\text{odd}}(n) = \sqrt{2} \int_{0}^{1} f(x) \sin 2\pi nx \, dx \,, \qquad n \geqslant 1 \,.$$

The key step in proving that the exponentials e_n : $n \in \mathbb{Z}^1$ span $L^2(S^1)$ is to check that the Fourier series of a smooth function f actually converges (to f!). This is the content of the following theorem.

THEOREM 2. For any $1 \le p < \infty$ and any $f \in C^p(S^1)$, the partial sums

$$S_n = S_n(f) = \sum_{|k| \le n} \hat{f}(k) e_k$$

converge to f, uniformly as $n\uparrow\infty$; in fact, $||S_n-f||_{\infty}$ is bounded by a constant multiple of $n^{-p+\frac{1}{2}}$.

Amplification: The bound on $||S_n - f||_{\infty}$ indicates that the speed of convergence of a Fourier series improves with the smoothness of f. This reflects the fact that local features of f (such as smoothness) are reflected in global features of \hat{f} (such as rapid decay at $n = \pm \infty$). This local-global duality is one of the major themes of Fourier series and integrals, as you will see later.

PROOF (for p = 1). Bring in the so-called Dirichlet kernel

$$\begin{split} D_n(x) &= \sum_{|k| \le n} e_k(x) = \sum_{|k| \le n} e^{2\pi i k x} \\ &= e^{-2\pi i n x} \sum_{k=0}^{2n} e^{2\pi i k x} \\ &= e^{-2\pi i n x} \frac{e^{2\pi i (2n+1)x} - 1}{e^{2\pi i x} - 1} \\ &= \frac{\sin \pi (2n+1)x}{\sin \pi x}, \end{split}$$

with the understanding that $D_n(0) = (2n+1)$, and note that you obtain the value of the forbidding-looking integral

$$\int_0^1 D_n = \int_0^1 \frac{\sin \pi (2n+1) x}{\sin \pi x} dx$$

as a fringe benefit:

$$\int_0^1 D_n = \sum_{|k| \le n} \int_0^1 e_k = 1.$$

The introduction of D_n is motivated by the desire to express S_n in a more transparent way:

$$S_n(x) = \sum_{|k| \le n} \hat{f}(k) e_k(x) = \sum_{|k| \le n} e_k(x) \int_0^1 f(y) e_k^*(y) dy$$

$$= \int_0^1 \sum_{|k| \le n} e_k(x - y) f(y) dy$$

$$= \int_0^1 D_n(x - y) f(y) dy$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x + y) D_n(y) dy.$$

To achieve the final expression, make the substitution $y-x \rightarrow y$, and use the fact that D_n is even:

$$\int_0^1 D_n(x-y) f(y) \, dy = \int_{-x}^{1-x} f(x+y) \, D_n(-y) \, dy = \int_{-x}^{1-x} f(x+y) \, D_n(y) \, dy;$$

then notice that $f(x+\cdot)D_n$ is a periodic function of period 1, so that you can replace the integral over $-x \le y \le 1-x$ by the integral over any period you like, for example, $-\frac{1}{2} \le x \le \frac{1}{2}$.

The problem of verifying that S_n is a good approximation to f can now be better understood with the aid of a picture of D_n ; see Fig. 1 for a sketch of D_8 . The peak tends to ∞ with n. At the same time, the oscillations to either side become increasingly rapid, and while they do not die away, you can

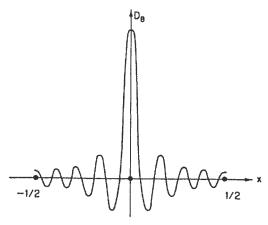


FIGURE 1

hope that they will, on the average, knock each other out, with the result that the major contribution to the integral comes from a small neighborhood of y = 0. The plan is to take (indirect) advantage of this phenomenon.

To begin with, since $f \in C^1(S^1)$,

$$(f')^{\hat{}}(n) = \int_0^1 f'e_n^* = -\int_0^1 fe'_n^* = 2\pi i n \hat{f}(n)$$

by partial integration. Therefore, by the inequalities of Schwarz and Bessel, if $n \le n' < \infty$, then

$$|S_{n} - S_{n'}| \leq \sum_{|k| > n} |\hat{f}(k)| = \sum_{|k| > n} |(f')^{\wedge}(k)| |2\pi k|^{-1}$$

$$\leq \left(\sum_{|k| > n} |(f')^{\wedge}(k)|^{2}\right)^{\frac{1}{2}} \left(\sum_{|k| > n} (2\pi k)^{-2}\right)^{\frac{1}{2}}$$

$$\leq ||f'||_{2} \times \text{a constant multiple of } n^{-\frac{1}{2}}.$$

This shows that S_n converges uniformly, at the advertised speed, to something. The only question is: to what?

Because

$$\int_{-\frac{1}{2}}^{\frac{1}{2}}D_n=1,$$

the discrepancy between f and the partial sum can be expressed as

$$S_n(x) - f(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} [f(x+y) - f(x)] D_n(y) dy$$
$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} Q(x, y) \sin \pi (2n+1) y dy,$$

with the understanding that

$$Q(x, y) = [f(x+y) - f(x)]/\sin \pi y$$

stands for $\pi^{-1} f'(x)$ at y = 0. Fix $-\frac{1}{2} \le x < \frac{1}{2}$. As a function of $-\frac{1}{2} \le y < \frac{1}{2}$, Q belongs to $L^2 \left[-\frac{1}{2}, \frac{1}{2} \right]$, and

$$S_n(x) - f(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} Q(x, y) \frac{e^{2\pi i n y} e^{\pi i y} - e^{-2\pi i n y} e^{-\pi i y}}{2i} dy$$
$$= (2i)^{-1} (Q^+)^{\wedge} (-n) - (2i)^{-1} (Q^-)^{\wedge} (n)$$

in which $Q^{\pm} = Q \exp(\pm \pi i y)$. By a second application of Bessel's inequality

$$\sum |(Q^{\pm})^{\hat{}}(n)|^2 \leq ||Q||_2^2 < \infty,$$

so $(Q^{\pm})^{\wedge}(n)$ approaches 0 as $|n|\uparrow\infty$, and $\lim_{n\uparrow\infty}S_n=f$ for each fixed $-\frac{1}{2}\leqslant x<\frac{1}{2}$, separately. Now make $n'\uparrow\infty$ in the preceding estimate for $|S_n-S_{n'}|$ to verify that $\|S_n-f\|_{\infty}$ is bounded by a constant multiple of $n^{-1/2}$. This completes the proof for the case p=1.

EXERCISE 2. Finish the proof of Theorem 1. Hint: The space $C^1(S^1)$ is dense in $L^2(S^1)$ by Exercise 1.2.11.

EXERCISE 3. Finish the proof of Theorem 2 for $2 \le p < \infty$. Hint: $(f')^{n} = 2\pi i n \hat{f}(n)$.

EXERCISE 4. Check that $f \in C^{\infty}(S^1)$ iff \hat{f} is rapidly decreasing in the sense that $n^p \hat{f}(n)$ approaches 0 as $|n| \uparrow \infty$ for every $p < \infty$, separately. Hint: For rapidly decreasing \hat{f} , $\sum \hat{f}(n) e'_n$ converges uniformly to a periodic function f_1 , and

$$\int_0^x f_1 = \sum \hat{f}(n) \int_0^x e_n' = \sum \hat{f}(n) \left[e_n(x) - e_n(0) \right] = f(x) - f(0).$$

The pointwise convergence of the Fourier series of a function from $L^2(S^1)$ is a very complicated business in general. Carleson [1966] proved that it must converge a.e., but there are examples with $f \in C(S^1)$ in which the sum diverges at uncountably many points. The situation for summable functions $\left[\int_0^1 |f| < \infty\right]$ is even more horrible; the most famous example is that of Kolmogorov [1926] in which the sum diverges everywhere! The proofs by Carleson and Kolmogorov are complicated and cannot be presented here; in fact, these remarks are merely meant to point out the very attractive simplicity of the following result of Fejér [1904].

THEOREM 3. For functions f of class $C(S^1)$, the arithmetic means $n^{-1}(S_0 + \cdots + S_{n-1})$ of the partial sums $S_n = \sum_{|k| \le n} \hat{f}(k)e_k$ converge uniformly to f.

EXERCISE 5. Check that the arithmetic means $n^{-1}(x_0 + \cdots + x_{n-1})$ of the numerical series x_0, x_1, \ldots converge to y if $\lim_{n \uparrow \infty} x_n = y$. Give an example to show that $\lim_{n \uparrow \infty} n^{-1}(x_0 + \cdots + x_{n-1})$ can exist even if $\lim_{n \uparrow \infty} x_n$ does not.

PROOF OF THEOREM 3. The proof makes use of the arithmetical means of the Dirichlet kernel:

$$F_n(x) = \frac{1}{n} (D_0 + \dots + D_{n-1})$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \frac{\sin \pi (2k+1) x}{\sin \pi x}$$

$$= \frac{1}{n} \left[\frac{\sin n\pi x}{\sin \pi x} \right]^2.$$

EXERCISE 6. Check the summation. Hint: Think of $\sin \pi (2k+1)x$ as the imaginary part of the complex exponential and sum the resulting geometrical series.

 F_n is the so-called Fejér kernel. Note for future use that F_n is nonnegative and that

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} F_n = n^{-1} \sum_{k=0}^{n-1} \int_{-\frac{1}{2}}^{\frac{1}{2}} D_k = 1.$$

The proposal is to check that the discrepancy

$$n^{-1} \sum_{k=0}^{n-1} S_k(x) - f(x) = n^{-1} \sum_{k=0}^{n-1} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x+y) D_k(y) dy - f(x)$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} [f(x+y) F_n(y) dy - f(x)]$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} [f(x+y) - f(x)] F_n(y) dy$$

is uniformly small. This is much easier for the present Fejér kernel F_n than it was for the Dirichlet kernel D_n since now the tails are small for large n and not just negligible due to rapid oscillation; see Fig. 2 for a sketch of F_8 .

To make the actual estimates pick a small positive number $\delta < \frac{1}{2}$ and divide the interval of integration into two parts according as $|y| < \delta$ or $|y| \ge \delta$. The first piece is bounded as follows:

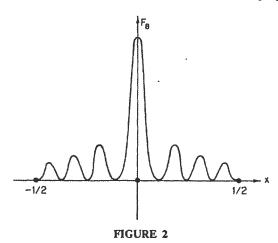
$$\left| \int_{|y| < \delta} \right| \le \int_{-\delta}^{\delta} |f(x+y) - f(x)| F_n(y) dy$$

$$\le \max_{|y| < \delta} \max_{|x| \le \frac{1}{2}} |f(x+y) - f(x)| \int_{|y| < \delta} F_n(y) dy$$

$$\le \max_{|y| \le \delta} ||f_y - f||_{\infty},$$

in which f_y is the translated function $f_y(x) = f(x+y)$. This can be made as small as you please by making $\delta \downarrow 0$, since f is uniformly continuous. As to the other piece,

$$\left| \int_{|y| \ge \delta} \right| \le \frac{4}{n} \| f \|_{\infty} \int_{\delta}^{\frac{1}{2}} \left[\frac{\sin n\pi x}{\sin \pi x} \right]^{2} dx$$
$$\le \frac{2}{n} (\sin n\delta)^{-2} \| f \|_{\infty},$$



and this can be made small for fixed $0 < \delta < \frac{1}{2}$ by making n large enough. The proof is finished.

EXERCISE 7. Check that for any $f \in L^2(S^1)$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right) = \hat{f}(0) = \int_0^1 f$$

in the sense of distance in $L^2(S^1)$. Hint: Compute the Fourier coefficients of the sum and use the Plancherel identity.

EXERCISE 8. Check that for any $f \in C(S^1)$ and $0 \le r < 1$,

$$\sum \hat{f}(n) r^{|n|} e_n(x) = \int_0^1 \frac{1 - r^2}{1 - 2r \cos 2\pi (x - y) + r^2} f(y) \, dy.$$

Hint: Express $\hat{f}(n)$ as an integral and bring the sum under the integral sign.

EXERCISE 9. Use Exercise 8 to prove the following variant of Theorem 3: For $f \in C(S^1)$,

$$\lim_{r \uparrow 1} \| \sum \hat{f}(n) r^{|n|} e_n - f \|_{\infty} = 0.$$

The fact goes back to Poisson; the formula of Exercise 8 is known by his name. Hint:

$$\int_0^1 \frac{1-r^2}{1-2r\cos 2\pi y + r^2} \, dy = \sum \hat{1}(n) \, r^{|n|} e_n(0) = 1 \, .$$

1.5 SUMMABLE FUNCTIONS AND THEIR FOURIER SERIES

The next topic is the space $L^1(S^1)$ of (complex) summable functions on the circle. This space, or more generally, the space $L^1(Q)$ of summable functions on an interval Q, is provided with a length

$$||f||_1 = \int_O |f| = \int_O |f(x)| dx$$

permitting you to define a distance much as for $L^2(Q)$. Clearly, the triangle inequality,

$$\|f+g\|_1 = \int_{\mathcal{Q}} |f+g| \, \leqslant \int_{\mathcal{Q}} |f| + \int_{\mathcal{Q}} |g| = \|f\|_1 + \|g\|_1,$$

is satisfied, so that $L^1(Q)$ is closed under addition of functions, and it goes without saying that it is also closed under multiplication by complex numbers.

Technical point: The reader should bear in mind that, just as for $L^2(Q)$ the things that live in $L^1(Q)$ are actually equivalence classes of functions; especially, you identify f with the 0-function if f = 0 a.e. so as to make f = 0 iff $||f||_1 = 0$. As before, it is simpler, and not at all confusing, to ignore this point most of the time and to speak of $f \in L^1(Q)$ as a function.

EXERCISE 1. Check that the space $L^1(Q)$ is not a Hilbert space. Hint: In any Hilbert space $\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$. Try this out for $Q = [0, 1], \alpha = 1$, and $\beta = x$. What happens? Try again.

EXERCISE 2. Show that the space $L^1(Q)$ is complete and separable. The definitions are as for $L^2(Q)$, but relative to the distance of $L^1(Q)$. Hint: The proof for $L^2(Q)$ is easily adapted from Section 1.2 with minor changes only.

EXERCISE 3. Show that the class of compact functions belonging to $C^{\infty}(Q)$ is dense in $L^{1}(Q)$. Hint: See Exercise 1.2.11. There is an inclusion between $L^{1}(Q)$ and $L^{2}(Q)$ if Q is bounded: Namely, by Schwarz's inequality,

$$||f||_1^2 = \left(\int_Q |f| \times 1\right)^2 \le \int_Q |f|^2 \int_Q 1^2 = ||f||_2^2 m(Q),$$

so that $L^2(Q)$ is included in $L^1(Q)$. In particular, this holds for functions on the circle, so that everything to be proved later about Fourier series of summable functions on the circle also holds for functions of class $L^2(S^1)$.

EXERCISE 4. Check by example that the inclusion of $L^2[0,1]$ in $L^1[0,1]$ is proper, that is, find a summable function f with $\int_0^1 |f|^2 = \infty$.

EXERCISE 5. Check by examples that neither $L^1(R^1)$ nor $L^2(R^1)$ is included in the other.

EXERCISE 6. Show that any linear map l of $L^1(Q)$ into the complex numbers, subject to $|l(f)| \le \text{constant} \times ||f||_1$, with a constant independent of f, can be expressed as $l(f) = \int_Q fg^*$ for some bounded measurable function g. Hint: $L^2(Q) \subset L^1(Q)$ if Q is bounded. Now use Exercise 1.3.15 to find such a function $g \in L^2(Q)$ and check that $\int_b^a |g| \le \text{constant} \times (b-a)$ for any interval $a \le x \le b$.

Given $f \in L^1(S^1)$, the function fe_n^* is summable, so you can set up a (formal) Fourier series for f by the customary recipe:

$$f = \sum \hat{f}(n) \, e_n$$

with coefficients

$$\hat{f}(n) = \int_0^1 f e_n^* = \int_0^1 f(x) e^{-2\pi i n x} dx.$$

The principal fact about such Fourier series is contained in

THEOREM 1. The arithmetical means $n^{-1}(S_0 + \dots + S_{n-1})$ of the partial sums $S_n = \sum_{|k| \le n} \hat{f}(k) e_k$ converge to f in the sense of distance in $L^1(S^1)$:

$$\lim_{n \uparrow \infty} ||n^{-1}(S_0 + \dots + S_{n-1}) - f||_1 = 0;$$

in particular, the map $f \rightarrow \hat{f}$ is 1:1.

PROOF. The discrepancy between $n^{-1}(S_0 + \cdots + S_{n-1})$ and f may be expressed by means of Fejér's kernel F_n , as in the proof of Theorem 1.4.3:

$$n^{-1}(S_0 + \dots + S_{n-1}) - f = \int_{-\frac{1}{2}}^{\frac{1}{2}} [f(x+y) - f(x)] F_n(y) dy,$$

and the length of the discrepancy can be bounded as follows:

$$||n^{-1}(S_0 + \dots + S_{n-1}) - f||_1 \le \int_{-\frac{1}{2}}^{\frac{1}{2}} dx \int_{-\frac{1}{2}}^{\frac{1}{2}} |f(x+y) - f(x)| F_n(y) dy$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} |f(x+y) - f(x)| dx \right) F_n(y) dy$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} ||f_y - f||_1 F_n(y) dy,$$

in which f_y is the translated function $f_y(x) = f(x+y)$. The rest of the proof runs parallel to that of Theorem 1.4.3. The only new ingredient is contained in

EXERCISE 7. Show that the map $f \rightarrow f_y$ is continuous in the distance of $L^1(S^1)$, i.e.,

$$\lim_{y\to 0} \|f_y - f\|_1 = 0.$$

Hint: $||f_y - f||_1 \le ||f_y - f||_{\infty}$, for f from $C(S^1)$ and the latter is dense in $L^1(S^1)$.

The Fourier coefficients of a summable function f do not satisfy

$$\sum |\hat{f}(n)|^2 < \infty;$$

that happens only if $f \in L^2(S^1)$, but they are bounded:

$$|\hat{f}(n)| = \left| \int_0^1 f e_n^* \right| \le \int_0^1 |f| = ||f||_1.$$

This crude estimate is much improved upon by the so-called Riemann-Lebesgue lemma:

THEOREM 2. The Fourier coefficient $\hat{f}(n)$ of any function $f \in L^1(S^1)$ tends to 0 as $|n| \uparrow \infty$.

PROOF. $\hat{f}(n) = \int fe_n^*$ can also be expressed as

$$\hat{f}(n) = -\int_0^1 f(x) \exp\left[-2\pi i n \left(x - (2n)^{-1}\right)\right] = -\int_0^1 f(x + (2n)^{-1}) e_n^*(x) dx,$$

since $e^{\pi i} = -1$. Now average the two expressions for $\hat{f}(n)$:

$$\hat{f}(n) = \frac{1}{2} \int_0^1 f(x) e_n^*(x) dx - \frac{1}{2} \int_0^1 f(x + (2n)^{-1}) e_n^*(x) dx$$
$$= \frac{1}{2} \int_0^1 \left[f(x) - f(x + (2n)^{-1}) \right] e_n^*(x) dx$$

and estimate as follows:

$$|\hat{f}(n)| \le \frac{1}{2} \int_0^1 |f(x) - f(x + (2n)^{-1})| dx = \frac{1}{2} ||f - f_{1/2n}||_1.$$

By Exercise 7, this approaches 0 as $|n| \uparrow \infty$. The proof is finished.

An important application of the Riemann-Lebesgue lemma is to verify that the *local* convergence of the Fourier series of a summable function depends only upon the *local* behavior of the function. This is the content of

THEOREM 3. Take $f \in L^1(S^1)$ vanishing near x = 0. Then S_n approaches 0 as $n \uparrow \infty$, uniformly near x = 0.

Amplification: Obviously, the point x=0 is in no way special; in fact, if f and g are summable functions and if f=g near some fixed point x_0 of the circle, then their partial Fourier sums behave in the same way in the vicinity of x_0 : Namely, $S_n(f) - S_n(g) = S_n(f-g)$ tends to 0 uniformly, near x_0 .

PROOF OF THEOREM 3. Suppose that f = 0 for $|x| \le \delta$ and express the partial sum S_n by means of the Dirichlet kernel of Section 1.4:

$$S_n(x) = \int_{-1}^{\frac{1}{2}} f(x+y) \frac{\sin(2n+1)\pi y}{\sin\pi y} dy.$$

Because f(x+y) = 0 if both |x| and |y| are $\leq \delta/2$, the functions

$$f^{\pm}(y) = \frac{f(x+y)e^{\pm i\pi y}}{2i\sin\pi y}$$

are summable if $|x| \le \delta/2$, and therefore

$$S_n(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f(x+y)}{\sin \pi y} \frac{e^{\pi i y} e_{-n}^*(y) - e^{-\pi i y} e_n^*(y)}{2i} dy$$
$$= (f^+)^{\wedge} (-n) - (f^-)^{\wedge} (n)$$

tends to 0 as $n \uparrow \infty$ for any fixed $|x| \le \delta/2$, by the Riemann-Lebesgue lemma. At the same time, for any $|x_1| \le \delta/2$ and $|x_2| \le \delta/2$,

$$|S_n(x_2) - S_n(x_1)| \le \int_{\frac{1}{2} \ge |y| \ge \delta/2} |f(x_2 + y) - f(x_1 + y)| \left| \frac{\sin(2n+1)\pi y}{\sin\pi y} \right| dy$$

$$\le \left(\sin\frac{\pi\delta}{2} \right)^{-1} \|f_{x_2} - f_{x_1}\|_1$$

$$= \left(\sin\frac{\pi\delta}{2} \right)^{-1} \|f_y - f\|_1$$

for $y = x_2 - x_1$. By Exercise 7, this makes S_n continuous for $|x| \le \delta/2$, uniformly in n, and a moment's reflection will convince you that this forces the convergence of S_n for $|x| \le \delta/2$ to be uniform. The proof is finished.

EXERCISE 8. Dini's test states that if $f \in L^1(S^1)$ and if for fixed $|x| \leq \frac{1}{2}$, the function $y^{-1}[f(x+y)-f(x)]$ is summable, then $\lim_{n \uparrow \infty} S_n(x) = f(x)$. Prove it. Hint: Use the Dirichlet kernel and the Riemann-Lebesgue lemma, as earlier.

A new feature of summable functions now comes into play: The space

 $L^1(S^1)$ is an algebra under the multiplication defined by the "convolution" product

$$f \circ g = \int_0^1 f(x-y) g(y) dy.$$

For fixed $0 \le x < 1$, the product $f(x - \cdot)g$ may be nonsummable, so it is necessary to check that $f \circ g$ makes sense. To do this with all the proper technical flourishes, look first at the plane integral

$$I = \int_0^1 \int_0^1 |f(x-y)g(y)| \, dx \, dy.$$

The integrand |f(x-y)g(y)| is a nonnegative (plane) measurable function, so the integral makes sense $[I \le \infty]$, and by Fubini's theorem, you can evaluate it as an iterated integral:

$$I = \int_0^1 |g(y)| \, dy \int_0^1 |f(x-y)| \, dx = \int_0^1 |g| \int_0^1 |f| = ||f||_1 \, ||g||_1 < \infty.$$

Fubini is used once more to conclude from

$$I = \int_0^1 dx \int_0^1 |f(x-y) g(y)| \, dy < \infty$$

that $f(x-\cdot)g$ is summable for almost every $0 \le x < 1$. Thus, $f \circ g(x)$ is given by an honest Lebesgue integral for almost every $0 \le x < 1$ and is itself a (periodic) summable function:

$$||f \circ g||_1 \le I = ||f||_1 ||g||_1 < \infty.$$

This kind of finicky proof is not very interesting, but it is important to understand precisely what is involved.

EXERCISE 9. Check that the product $f \circ g$ is associative and commutative, putting in all the technical details.

EXERCISE 10. Check that $L^2(S^1)$ is an ideal in $L^1(S^1)$. This means that $f \circ g$ belongs to $L^2(S^1)$ as soon as one of the factors does.

EXERCISE 11. Check that the Dirichlet and Fejér formulas for partial sums can be expressed as

$$S_n = f \circ D_n$$

and

$$n^{-1}(S_0 + \dots + S_{n-1}) = f \circ F_n.$$

A pretty interplay takes place between the product $f \circ g$ and Fourier series, stemming from

$$(f \circ g)^{\wedge} = \hat{f}\hat{g};$$

this simple formula plays a very important role in applications, as you will see later.

PROOF. By Fubini's theorem,

$$(f \circ g)^{\wedge}(n) = \int_{0}^{1} \left[\int_{0}^{1} f(x-y)g(y) \, dy \right] e_{n}^{*}(x) \, dx$$

$$= \int_{0}^{1} \int_{0}^{1} f(x-y)e_{n}^{*}(x-y)g(y)e_{n}^{*}(y) \, dx \, dy$$

$$= \int_{0}^{1} g(y)e_{n}^{*}(y) \, dy \left[\int_{0}^{1} f(x-y)e_{n}^{*}(x-y) \, dx \right]$$

$$= \int_{0}^{1} ge_{n}^{*} \int_{0}^{1} fe_{n}^{*}$$

$$= \hat{f}(n)\hat{g}(n).$$

EXERCISE 12. Check that $L^1(S^1)$ does not have a multiplicative identity. Hint: A multiplicative identity e would satisfy $e \circ f = f$. Now look at \hat{e} keeping the Riemann-Lebesgue lemma in mind.

EXERCISE 13. Define f^n to be the *n*-fold product $f \circ \cdots \circ f$ of a summable function f. Prove that

$$\lim_{n \to \infty} (\|f^n\|_1)^{1/n} = \|\hat{f}\|_{\infty} = \max_{|n| < \infty} |\hat{f}(n)|,$$

under the extra assumption that f belongs to $L^2(S^1)$. Hint: The fact that $\|\hat{f}\|_{\infty}$ does not exceed the left-hand side is self-evident. To finish the proof use

$$||f^n||_1 = \int f^n \{ \exp[i \arg(f^n)] \}^* = \sum \hat{f}^n \{ \exp[i \arg(f^n)] \}^*.$$

The map $f \rightarrow \hat{f}$ maps $L^2(S^1)$ onto $L^2(Z^1)$, and

$$||f||_2 = ||\hat{f}||_2 = (\sum |\hat{f}|^2)^{1/2} < \infty$$
.

The situation for $L^1(S^1)$ is very much more complicated. The information

¹ For a proof of this formula without the extra assumption see, for example, Edwards [1967, article 11.4.14].

at hand about the class A of Fourier coefficients \hat{f} of summable functions may be summarized as follows:

(a) A is populated by bounded functions \hat{f} :

$$\|\hat{f}\|_{\infty} = \lim_{n\uparrow\infty} (\|f^n\|_1)^{1/n} \leq \|f\|_1.$$

- (b) $\hat{f} = 0$ iff f = 0, i.e., \wedge is a 1:1 map.
- (c) $\hat{f} = 0$ at $\pm \infty$, i.e., $\lim_{|n| \to \infty} \hat{f}(n) = 0$.
- (d) A is an algebra: namely,

$$(\hat{f}\hat{g})(n) = \hat{f}(n)\hat{g}(n) = (f \circ g)^{\wedge}(n).$$

Unfortunately, (a) and (c) do not suffice to single out precisely which functions \hat{f} arise as Fourier coefficients of summable functions. The situation is thus entirely different from $L^2(S^1)$ where the condition

$$\|\hat{f}\|_2 = (\sum |\hat{f}|^2)^{1/2} < \infty$$

is decisive. The best information currently available indicates that A does not have any neat description.

EXERCISE 14. Check that the class B of summable functions \hat{f} is a subalgebra of A. The adjective "summable" means that $\|\hat{f}\|_1 = \sum |\hat{f}(n)| < \infty$.

EXERCISE 15. Check that $B^{\vee} = (f = \sum \hat{f}(n) e_n : \hat{f} \in B)$ is a subalgebra of $C(S^1)$ under the *ordinary* multiplication of functions. *Hint*: $(fg)^{\wedge}(n) = \sum \hat{f}(n-k) \hat{g}(k)$.

A celebrated theorem of Wiener [1933, p. 91] states that if $f \in B^{\vee}$ is root-free $[f \neq 0]$, then also $1/f \in B^{\vee}$. A wide variety of fascinating and delicate results about A and B have been obtained since that date: the advanced student will find a nice account in Edwards [1967].

1.6* GIBBS' PHENOMENON

Thus far, the object has been to show how well Fourier series converge. Gibbs' phenomenon has to do with how poorly they converge in the vicinity of a jump of f. The statement is that in the vicinity of a simple jump of the function f, the partial sums S_n always overshoot the mark by about 9%. This fact was pointed out by Gibbs in a letter to Nature [1899]. (Actually Gibbs' phenomenon was first described by the British mathematician Wilbraham [1848]; see Carslaw [1925] for the history.) The function Gibbs considered