HAAR WAVELET ANALYSIS

4.1 WHY WAVELETS?

Wavelets were first applied in geophysics to analyze data from seismic surveys,
which are used in oil and mineral exploration to get “pictures” of layering in
subsurface rock. In fact, geophysicists rediscovered them; mathematicians had
developed them to solve abstract problems some 20 years earlicr, but had not
anticipated their applications in signal processing.'

Seismic surveys arc made up of many two-dimensional pictures or slices.
These are sewn together to give a three-dimensional image of the structure of
rock below the surface. Each slice is obtained by placing geophones—scismic
“microphones” —at equally spaced intervals along a line, the seismic line. Dyna-
mite is set off at one end of the line to create a seismic wave in the ground. Every
geophone along the line records the movement of the earth due to the blast, from
start to finish; this record is its seismic trace (see Figure 4.1).

The first wave recorded by the geophones is the direct wave, which travels
along the surface. This is usually not important. Subsequent waves are reflected
off rock layers below ground. Thesc are the important ones. Knowledge of the
time that the wave hits a geophone gives information about where the layer that
reflected it is located. The “wiggles™ that the wave produces tell something about

'See Meyer's book (Meyer, 1993) for an interesting, first-hand account of how wavelets developed

A Lirst Course in Wavelets with Fourier Analvsis, Second Ldition, by Albert Boggess and Francis § Narcowich
Copynght ® 2009 John Wiley & Sons. Inc
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Figure 4.1, The figure shows a typical scismic trace Displacement is plotted versus time.
Both the oscillations and the time they occur are important

the fine details of the layer. The traces from the all the geophones on a line can
be combined to give the slice for thc ground directly bencath the line.

The key to an accurate seismic survey is proper analysis of each trace. The
Fourier transform is not a good tool here. It can only provide frequency infor-
mation (the oscillations that comprise the signal). 1t gives no direct information
about when an oscillation occurred. Another tool, the short-time Fourier trans-
form, is better. The full time interval is divided into a number of small, equal
time intervals; these are individually analyzed using the Fourier transform. The
result contains time and frequency information. However, there is a problem with
this approach. The equal time intervals are not adjustable; the times when very
short duration, high-frequency bursts occur are hard to detect.

Enter wavelets, Wavelets can keep track of time and frequency information.
They can be used to “zoom in” on the short bursts mentioned previously, or to
“z00m out” to detect long, slow oscillations.

4.2 HAAR WAVELETS

4.2.1 The Haar Scaling Function

There are two functions that play a primary role in wavelet analysis: the scaling
function ¢ and the wavelet . These two functions gencrate a family of functions
that can be used to break up or reconstruct a signal. To emphasize the “marriage”
involved in building this “family,” ¢ is sometimes called the “father wavelet,”
and ¢ is sometimes referred to as the “mother wavelet.”
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Figure 4.2, Graph of the Haar scaling function,

The simplest wavelet analysis is bascd on the Haar scaling function, whose
graph is given in Figure 4.2. The building blocks are translations and dilations
(both in height and width) of this basic graph.

We want to illustrate the basic ideas involved in such an analysis. Consider
the signal shown in Figure 4.3. We may think of this as a measurement of some
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Figure 4.3. Voltage from a faully meter.
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Figure 4.4. Approximation of voltage signal by Haar functions

physical quantity—perhaps line voltage over a single cycle—as a function of
time. The two sharp spikes in the graph might represent noisc coming from a
loose connection in the volt meter, and we want to filter out this undesirable noise.
The graph in Figure 4.4 shows onc possible approximation to the signal using
Haar building blocks. The high-frcquency noisc shows up as tall thin blocks. An
algorithm that deletes the thin blocks will climinate the noise and not disturb the
rest of the signal.

The building blocks generated by the Haar scaling function are particularly
simple and they illustrate the general ideas underlying a multiresolution analysis.
which we will discuss in detail. The disadvantage of the Haar wavelets is that thcy
are discontinuous and therefore do not approximate continuous signals very well
(Figure 4.4 does not rcally approximate Figure 4.3 too well). In later sections we
introduce other wavelets, due to Daubechies, that arc continuous but still retain
the localized behavior exhibited by the Haar wavelets.

Definition 4.1 The Haar scaling function is defined as

1 f0<x<l,
0 elsewhere.

o(x) =

The graph of the Haar scaling function is given in Figurc 4.2.
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Figure 4.5. Graph of typical element in Vj.

The function ¢(x — k) has the saume graph as ¢ but is translated to the right
by k units (assuming k is positive). Let V be the space of all functions of the
form

Yabx—k).  aeR,

ke/

where k can range over any finite set of positive or negative integers. Since
¢ (x — k) is discontinuous at x = k and x = k + 1, an alternative description of
Vo is that it consists of all piecewise constant functions whose discontinuities are
contained in the set of integers. Since k ranges over a finite set, each element of
Vo is zero outside a bounded set. Such a function is said to have finite or compact
support. The graph of a typical clement of V is given in Figure 4.5. Note that
a function in Vy may not have discontinuities at all the integers (for example, if
a) = as, then the previous sum is continuous at x = 2).

Example 4.2 The graph of the function
fxX)=20(x)+3p(x — N +3¢(x —2) - p(x —-3) eV

is given in Figure 4.6. This function has discontinuities at x = 0,1, 3, and 4. B

We nced blocks that arc thinner to analyze signals of high frequency. The
building block whose width is half that of the graph of ¢ is given by the graph
of ¢(2.x) shown in Figure 4.7.

The function ¢(2x — k) = ¢(2(x — k/2)) is the same as the graph of thc
function of ¢(2x) but shifted to the right by k/2 units. Let V; be the space of
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Figure 4.6. Plot of f in Example 4 2.
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Figure 4.7. Graph of ¢(2x).

functions of the form

D ap2x—k),  ar€R.

keZ

Geometrically, V) is the space of piecewise constant functions of finite support
with possible discontinuitics at the half integers {0, £1/2, &1, £3/2...}.

Example 4.3 The graph of the function
S(x)=4¢2x) +2¢02x — 1) +20(2x - 2)—¢p(2x -3) e W
is given in Figure 4.8. This function has discontinuities at x =0, 1/2, 3/2,

and 2.
We make the following more general definition. |
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Figure 4.8, Plot of f in Example 4.3.

Definition 4.4 Suppose j is any nonnegative integer. The space of step func-
tions at level j, denoted by V;, is defined to be the space spanned by the set

[ px+ 1,02/ x). ¢2x=1),0(2Px-2)...}

over the real numbers. V; is the space of piecewise constant functions of finite
support whose discontinuities are contained in the set

{...—1/29,0.1720,2/27,3/20 ..},

A function in Vj is a piecewise constant function with discontinuities contained
in the set of integers. Any function in V; is also contained in V), which consists
of piecewise constant functions whose discontinuities are contained in the set of
half integers {...—1/2, 0, 1/2, 1, 3/2...}. Likewisc, V| C V; and so forth:

VoCcV, C- -Vj_| CVjCVj.,.|---.

This containment iy strict. For example. the function ¢(2x) belongs to V; but
does not belong to Vj (since ¢(2x) is discontinuous at x = 1/2).

V; contains all relevant information up to a resolution scale of order 27,
As j gets larger, the resolution gets finer. The fact that V; C V;;, means that
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no information is lost as the resolution gets finer. This containment rclation is
also the reason why V; is defined in terms of $(2/ x) instead of ¢(ux) for some
other factor a. If, for cxample, we had defined V> using ¢(3x — j) instead of
¢(4x — j), then V> would not contain V| (since the set of multiples of 1/2 is not
contained in the sct of multiples of 1/3).

4.2.2 Basic Properties of the Haar Scaling Function

The following theorem is an easy conscquence of the definitions.
Theorem 4.5

* A function f(x) belongs to V; if and only if f(2/x) belongs to V;.
* A function f(x) belongs to V; if and only if f(27/x) belongs to Vp.

Proof. To prove the first statement, if a function f belongs to Vp then f(x) is a
lincar combination of {¢(x — k), k € Z}. Therefore, f(2/x) is a linear combina-
tion of {¢(2/x — k), k € Z}, which means that f(2/x) is a member of V;. The
proofs of the converse and thc second statement are similar. ]

The graph of the function ¢(2/x) is a spike of width 1/2/. When j is large,
the graph of ¢(2/x) (appropriately translated) is similar to one of the spikes of
a signal that we may wish to filter out Thus it is desirable to have an cfficient
algorithm to decompose a signal into its V; components. One way to perform this
decomposition is to construct an orthonormal basis for V; (using the L? inner
product).

Let's start with Vj. This space is generated by ¢ and its translates. The func-
tions ¢(x — k) each have unit norm in L2, that is,

5 > " A+1
=Bl = [~ ow—itdx= [ tar=1,
—oc k

If j is different from k. then ¢ (x — j) and ¢(x — k) have disjoint supports (see
Figure 4.9). Therefore

D0 — J). Blx — k)2 =f Slx— Nolx —Kdx =0,  j#k

and so the set {¢(x — k). k € Z} is an orthonormal basis for Vj.
The same argument establishes the following more gencral result.

Theorem 4.6 The set of functions {2//2¢(2/x — k): k € Z} is an orthonormal
basis of V;

(The factor 2//2 is present since [72 (¢(2/x))* dx = 1/2/).
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Figure 4.9. ¢(x — j) and ¢ (x — ) have disjoint support

4.2.3 The Haar Wavelet

Having an orthonormal basis of V; is only half of the picture. In order to solve
our noise filtering problem, we need to have a way of isolating the “spikes™ which
belong to V; but which are not members of V;_,. This is where thc wavelet ¢
enters the picture.

The idea is to decomposc V; as an orthogonal sum of V;_; and its complement.
Again, let’s start with j = | and identify the orthogonal complement of V) in
V. Since V| is generated by ¢ and its translates, it is reasonable to expect that
the orthogonal complement of V) is generated by the translates of some function
Y. Two key facts are nceded to construct .

I. Y is a member of V; and so ¥ can be expressed as ¥ (x) = Y, a;¢(2x — /)
for some choice of ¢; € R (and only a finite number of the a; are non-zero).

2. ¥ is orthogonal to Vy. This is equivalent to f Y(x)p(x — k)dx = () for all
integers k.

The first requircment means that ¥ is built from blocks of width 1/2—that
is, scalar multiples of Figure 4.7 and its translates. The second requirement with
A =0 implies ff‘; Y (x)p(x)dx = 0. The simplest ¢ satisfying both of these
requirements is the function whose graph appears in Figure 4.10. This graph
consists of two blocks of width one-half and can be written as

Y(x) =¢(2x) — p(2(x — 1/2))
=¢(2x) —¢(2x — 1)
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Figure 4,10, The Haar wavelct y(x)

thus satisfying thc first requirement. 1n addition, we have

< 1/2 |
/ ¢(X)1/'(X)dx=/ ldx—-/ ldx
- 0 1/2

=1/2-1/2

=0.
Thus, ¥ is orthogonal to ¢. If k # 0, then the support of ¥ (x) and the support of
¢(x — k) do not overlap and so fl,l/(x)q)(x — k) dx = 0. Therefore, ¥ belongs
to V; and is orthogonal to Vp: y is called the Huaar wavelet.
Definition 4.7 The Haar wavelet is the function

Y(x) = ¢(2x) — P (2x — 1).

Its graph is given in Figure 4.10.

You can show (sec cxcrcise 5) that any function

fi=) ap@x—k eV,
A

is orthogonal to Vj (i.e.. orthogonal to cach ¢(x — 1),/ € Z) if and only if
a, = —ay. ay= —dy-
In this case,

h=) an@@r-2%)—¢pQx—2k—1)=) anP(x—k). (41)

kes ¥4
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In other words, a function in V| is orthogonal to Vj, if and only if it is of the
form )", axy (x — k) (relabeling ay by ay).
Let W, be the space of all functions of the form

Za“//(x—k). ax € R,

keZ

where, again, we assume that only a finite number of the a; arc nonzcro. What
we have just shown is that W, is the orthogonal complement of Vj in Vy; in
other words, V| = Vi, @ Wy (recall from Chapter O that @ means that V; and W
are orthogonal to each other).

In a similar manner, the following, morc general result can be cstablished.

Theorem 4.8 Let W; be the space of functions of thc form

dDay@x—k. aek,

keZ

where we assume that only a finitc number of a; are nonzero. W; is the orthogonal
complement of V; in V;.; and

Proof. To establish this thcorem, we must show two facts:

1. Each function in W; is orthogonal to every function in V;.
2. Any function in V;4, which is orthogonal to V; must belong to W;.

For the first requirement, suppose that g =3, a ¥ (2/x — k) belongs 1o
W; and suppose f belongs to V;. We must show

(8 fl2 =/ g f(x)dx =0.

00
Since f(x) belongs to V;, the function f(2=ix) belongs to V. So

x —
0= / Zakw(x -k f(2 ix)dx (becausc y is orthogonal to Vp)

X ke7

X
=2/ f Zakw(ij —kYf(y)dy (by letting v = 27ix)

* (ez
) X
=2/ f g fy)dy
-

Thercfore, g is orthogonal to any f € V; and the first requircment has been
established.
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The discussion leading to Eq. (4.1) eslablishes the second requirement when
j = 0 since we showed that any function in V, which is orthogonal to Vo must be
a linear combination of {y(x — k), k € Z}. The casc for general j is analogous
10 the case when j = 0. |

By successively decomposing V;, V;_|, and so on, we have
Vi=W18 V-
=W, 1eW;,®V;

=W eoW,,8-- aWyeW.
So each f in V; can be decomposed uniquely as a sum
f=wji+wja+---+wo+ fo.

where each w; belongs 1o Wy, 0 </ < j — 1 and fp belongs to V. Intuitively,
w; represents the “spikes” of f of width 1/2/~! that cannot be represented as
linear combinations of spikes of other widths.

What happens when j goes to infinity? The answer is provided in the following
thcorem.

Theorem 4.9 The space L2(R) can be decomposed as an infinite orthogonal
direct sum

LXRy=VooWed W & .
In particular, cach f € L2(R) can be written uniquely as
XX
f=fo+ Z wj,
j=0
where f; belongs to Vo and w; belongs to Wj.

The infinite sum should be thought of as a limit of finite sums. In other
words,

N
f= fo+,JijZ=;)wj- (4.2)

where the limit is taken in the scnse of L2. Although the proof of this result is
beyond the scope of this text, some intuition can be given. There arc two key
ideas. The first is that any function in L2(R) can be approximated by continuous
functions (for an intuitive explanation of this idea, see Lemma 1.38). The second
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Figure 4.11. Approximating by step functions.

is that any continuous function can be approximated as closely as desired by a
step function whose discontinuities are multiples of 27/ for suitably large j (see
Figure 4.11). Such a step function, by definition, belongs to V;. The theorem is
then established by putting both idcas together.

4.3 HAAR DECOMPOSITION AND RECONSTRUCTION
ALGORITHMS

4.3.1 Decomposition

Now that V; has been decomposed as a direct sum of Vg and W, for0 <! < j, the
solution to our noise filtering problem is theoretically casy. First, we approximate
f by a step function f; € V; (for j suitably large) using Theorem 4.9 Then we
decompose f; into its components

fj=f()+w|+"'+wj..|, w; € W,

The component, w;, represcnts a “spikc™ of width 1/2/+!, For / sufficiently large,
these spikes are thin enough to rcpresent noise. For example, suppose that spikes
of width less than .01 represent noise. Sincc 270> .01 > 27, any w; with j > 6
represents noisc. To filter out this noise, thcse components can be sct equal to
scro. The rest of the sum represents a signal that is still relatively close to [ and
which is noise free,

In order to implement this theoretical algorithm, an efficient way of performing
the decomposition given in Thcorem 4 9 is needed. The first stcp is to approximate
the original signal f by a step function of the form

[ixy =) ap@x 1. 4.3)

le7
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The procedure is to sample the signal at x = ...~ 1/2/.0,1/2/,..., which leads
toa; = f(1/27) for! € Z. Anillustration of this proccdure is given in Figure 4.11,
where f is the continuous signal and f; is the step function. Here, j is chosen
o that the mesh size 2~/ is small enough so that f;(x) captures the essential
featurcs of the signal The range of / depends on the domain of the signal. If the
signal is defined on 0 < x < |, thenthe range of [ is 0 </ <2/ — 1. In general,
we will not specify the range of / unless a specific example is discussed.

Now, the task is to decompose ¢(2/x — [) into its W, components for [ < j.
The following relations betwecn ¢ and  are needed.

¢(2x) = (Y (x) + 9 (x))/2, (4.4)

$Q2x — 1) = (9(x) — ¥(x))/2, (4.5)
which follow easily by looking at their graphs (sec Figures 4.2 and 4.10). More
generally, we have the following lemma.

Lemma 4.10 The following relations hold for all x € R.

¢ (27x) = (W2 )+ (27 'x))/2, (4.6)
P2 x—1)= (@) -y 'xy/2. (4.7)

This lemma follows by replacing x by 2f"‘x in Egs. (4.4) and (4.5).
This lemma can be uscd to decompose ¢ (2/x —I) into its W, components for
[ < j. An example will help illustrate the process.

Example 4.11 Let f be given by the graph in Figure 4.12. Notice that the mesh
size needed to capture all the features of f is 272, A description of f in terms
of ¢(2%2x — 1) is given by

fx)=20(4x) +2¢0(4x — 1)+ p(4x —2) — p(4x = 3) (4.8)

We wish to decompose f into its Wy, Wy, and V) components. The following
equations follow from Eqgs. (4.6) and (4.7) with j = 2.
@ (4x) = (¥ (2x) + ¢(2x)) /2.

¢(4x — 1) = (¢(2x) — ¥ (2x)) /2,

P(4x —2) = (4(x — 1/2)) = (Y 2(x = 1/2)) + ¢ 2(x — 1/2))) /2,

P4x —3) =d(4(x — 1/2) = 1) = (¢ 2(x = 1/2)) ~ ¥ (2(x = 1/2))) /2.
Using thesc cquations together with Eq. (4.8) and collecting terms yield

fx) =1¥(2x) + ¢ (2x)] + [¢(2x) — ¥ (2x)]

+W@x—1)+¢@2x - DI/2-[¢@2x - 1) - y(2x - 1)]/2
=Y 2x — 1)+ 2¢(2x)
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Figure 4.12. Graph of Example 4.11.

The W\ component of f(x) is ¥(2x — 1), since W) is the linear span of (Y (2x —
k); k € Z}. The V| component of f(x) is given by 2¢(2x). This component can
be further decomposed into a Vy component and a Wy component by using the
equation ¢ (2x) = (¢ (x) + ¥ (x))/2. The result is

fY=vQ2x - D+ ¢x)+o(x).

This equation can also be verified geometrically by cxamining the graphs of the
functions involved. The terms in the expression at right arc the components of
f in Wi, Wy, and V), respectively. [ |

Using this example as a guide. we can proceed with the general decomposition
scheme as follows. First divide up the sum f;(x) = Y, &t¢(2/x — k) into even
and odd terms:

fi0) =) and@x —2)+ Y ann¢p@x-2%-1). 49

keZ hed

Next, we use Egs. (4.6) and (4.7) with x replaced by x — k2'~/:

dx —20) = (Y@ x =)+ (2 x = k))/2. (4.10)
SQx =2k - 1) = (¢ 'x —k) - ¥ (2! x = k))/2. 4.11)
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Substituting these expressions into Eq. (4 9) yields

fixy= an (W@ 'x -k +6@ 'x-k)/2

kez
+) ans (67 x b = (27 x — k) 2
e/
_ z (au = au p ) G — k) + (lle +ayq ) Q2" x = k)
kes 2 2
=wj-1 + fj-1.

The first term on the right, w;;, represents thc W;_; component of f; since
Wj_1 is, by definition, the linear span of {y(2/~"x ~k), k € Z}. Likewise,
the sccond term on the right, f;_,, rcpresents the V; | component of f;. We
summarizc the preceding decomposition algorithm in the following theorem.

Theorem 4.12 (Haar Decomposition) Suppose

fiy =Y ajl¢p2ix~k) eV,

he/
Then f; can be decomposed as
Si=wj i+ fi-1. 24
where
wj =Y b W@ -k ew,,.
keZ
f-r =)@ 0@ =k e Vi
he7
ith i Jop
pim! = Qg ol = A% +ay.,
A n 2 ’ A - 2 .

The preceding process can now be repeated with j replaced by j ~ | to decom-
pose f; aswj_; + [;_2. Continuing in this way, wc achieve the decomposition

fi=wj +wj2+--+wo+ fo

To summarize the decomposition process, a signal is first discretized to pro-
ducc an approximate signal f; € V; as in Theorem 4.9. Then the decomposition
algorithm in Theorem 4 12 produces a decomposition of f; into its various fre-
quency componcnts: fj =wj+w; 2+--+wo+ Jfo.
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Figure 4.13. Sample signal

Example 4.13 Consider the signal, f, defined on the unit interval 0 < x <1
given in Figure 4.13. We discretize this signal over 2% nodes (so a,’f = f(k/2%)
since a mesh size of width 1/2% seems to capture the essential featurcs of this
signal. Thus
-1
fux) =) [k/2H¢24x - k)

k=0

approximates f well enough for our purposes. Using Theorem 4.12, we decom-
pose fy into its components in Vj, for j =8,7,...,0. Plots of the components
in fxe Vg, f7€ Vq, fo € Vs, and fy € V4 are given in Figures 4.14, 4.15, 4.16
and 4.17. A plot of the W; component is given in Figure 4.18. The W, component
is small except where the onginal signal contains a sharp spike of width ~ 2-8
(at x = (.3 and x = 0.65). B

4.3.2 Reconstruction

Having decomposed f into its Vy and W; components for 0 < j' < j, then
what? The answer depends on the goal. If the goal is to filter out noise. then
the W; components of f corrcsponding to the unwanted frequencies can be
thrown out and the resulting signal will have much less noise. If the goal is
data compression, the W;» components that are small can be thrown out, without
appreciably changing the signal. Only the significant Wj» components (the larger
b] ) need to be stored or transmitted and significant data compression can be
achicved. Of course, what constitutes “small” depends on the tolerance for error
for a particular application.
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Figure 4.15. V7 component.

In either case, since the b,{l have been modified, we need a reconstruction
algorithm (for the receiving end of the signal perhaps) so that the compressed
or filtered signal can be rebuilt in terms of the basis elements ¢ (2/x — 1) of V;
that is, _

f) =) ale@x-D.

leZ
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Figure 4.16. Vs component.
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Figure 4.17. V4 component.

Once this is done, the graph of the signal f is a step function of height a,j over
the interval //2/ < x < (I + 1)/2/.
We start with a signal of the form

f(x) = folx) +wolx) + - +w; 1(x), w € W,
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Figure 4.18. W7 component.

where

foxy =) alp(x—k) € Vo and w =) hyQx-k € W

ke’ k

for ) <1 < j — I. Our goal is to rewrite f as f(x) = 3 a,j¢(2fx — 1) and find
an algorithm for thc computation of the constants af . We use the equations

O(x) =p2x) + ¢x — 1), 4.12)
Y(x)=¢2x)—d2x —1). 4.13)

which follow from the definitions of ¢ and . Replacing x by 2/~ 1x yields
¢ x) =p(2x) + (27 x — 1), (4.14)
Y2 ) = ¢(2/x) — 92/ x - ). (4.15)

Using Eq. (4.12) with x replaced by x — k, we have
Solx) = Za,?d:(x —k) (the dcfinition of fp)
ke7

=) alpx —2k) +al¢p2x — 2k~ 1)  from Eq (4.12).
kel
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So

Sox) =" ale@x - 1. (4.16)

ke/

where

, al il =2k is even.

a = 0 e _ o .
a, iftl=2k+1isodd.

Similarly, wg = ¥, 0% (x — k) can be written [using Eq. (4.13) for y(x — k)]
as

wolx) = ) _ bl¢(2x —1). @.17)

leZ

where
" bY. if I =2k is cven,
b =
—b7. ifl=2k+1is odd.

Combining Egs. (4.16) and (4.17) yields

folx) + wo(x) = Y_aj¢2x = 1),

Ic/

where 0 0
| Al | ak +bk |f1=2k.
= b =
o=t la;’—b;j if =2k +1.
Next, w; =Y, b£¢(2x — k) is added to this sum in thc same manner [using
Eqs. (4.12) and (4.13) with x replaced by 2x — k|:

folx) + wo(x) + w (¥) = ) aip(2x 1),

lc/

where
) al +b] ill=2k,
a = I_pl s
al —by. ifl=2k+1.

Note that the af and bY coefficients determinc the a coefficients Then, the
a} and b} coefficients determine the a? coefficients, and so on, in a recursive
manner.

The preceding reconstruction algorithm is summarized in the following
theorem.
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Theorem 4.14 (Haar Reconstruction) f f = fo+wo+w, +wy+ -+
wj—1 with

o =Y do-keVy and wpt)=Y b/ y@x—k e w;

kel kes

for 0 < j' < j, then

flo =Y dal¢@x-nev,

ic/7

where the a,j' are determined recursively for j' =1, then j/ =2... until j/ = j
by the algorithm

j n,{l—l +b,{’_l. if 1 =2k is even,

a;, = . .t
’ al " =BT =2k 4 1 is odd.

Example 4.15 We apply the decomposition and rcconstruction algorithms to
compress the signal f that is shown in Figure 4.19; f is defined on the unit
interval. (This is the samc signal used in Example 4.13.)

We discretize this signal over 2¥ nodes (so af = f(k/2%)) and then decompose
this signal (as in Thecorem 4.12) to obtain f = fy + w4+ w) +wr+ -+ wy

I 1 I U I I 1 T L I i V T T Ll

[} %]
lllllll
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|l||lllllII]ll’llll||lll
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Figure 4.19. Sample signal
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Figure 4.20. Graph showing 80% compression

with

folx) = alp(x) € Vo and wyr(x) = bl Y@ x ~ k) € Wy
keZ

for 0 < j' < 7. Note that there is only onc basis term ¢ (x) in Vj, since the interval
of consideration is ) < x < I. We first use 80% compression on this decomposed
signal, which means that aficr ordering the |b{| by sive, we set the smallcst 80%
cqual to scro (rctaining the largest 20%). Then we reconstruct the signal as in
Thcorcm 4.14. The result is graphed in Figure 4.20. Figurc 4.21 illustrates the
same process with 90% compression. Thc relative L? crror is 0.0895 for 80%
compression and ().1838 for 90% compression. [ ]

4.3.3 Filters and Diagrams

The decomposition and reconstruction algorithms can be put in thc language of
discrete filters and simple operators acting on a sequencc of coefficients, The
algorithms can then be visualized in terms of block diagrams.

We will do the decomposition algorithm first. Define two discrete filters (con-
volution operators) H and L via their impulse responses, which are the scquences
h and ¢:

h=(---0---—5 % .()...)‘ e=(...()...% % .0- )
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Figure 4.21. Graph showing 90% compression.

If {x;} € €2, then H(x) := h % x and L(x) := £ * x. The resulting sequences are

1 | 1 ]
Hx} =h*x) = 3%~ SRk Lx)y=(E*xx) = 2%k + F Xk -

If we kcep only even subscripts, then H(x)y = (h* x)y = %xu - %xzk“ and
L(x)y = (E*xx)y = %xu + %x;)k+|. This opcration of discarding the odd coef-
ficients in a sequence is called down sampling; we will denote the corresponding
operator by D. .

We now apply these ideas to go from level j scaling coefficients aj to get the
level j — 1 scaling and wavelet coefficients. Using Theorem 4.12 and replacing
x by a], _ _

bi™' = DH(@'), and &' = DL(a')

Figure 4.22 illustrates the decomposition algorithm. The down-sampling operator
D is replaced by the more suggestive symbol, “2.” N

_ The reconstruction algorithm also requires defining two discrete filters A and
L via their corresponding impulse responses,

R (o0l — 1220 -2), T=(0-o1 1.--0.-):
e N
k=0.1 k=01

for a sequence {x;}, we have (F*x)k = x; — Xx- and (F* X = xf + Xk—1.
Here is an important observation. If x and v are sequenccs in which the odd
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H 2! bl !

al

L 21 al=!

Figure 4.22. Haar decomposition diagram.

entries are all 0, then

~ )} xa, 1'=2kis even, = _ | va. [ =2k is even,
(h* x) = —xu, [ =2k+1is odd, (€xy) = yu. =2k +1is odd.

Adding the two sequences W% x and € * y then gives us

~ ~ | x4+ yu. [ =2kis even,

(hxh + (Ex y) = { ya — xa, | =2k + 1 is odd,

This is almost the pattern for the reconstruction formula given in Theorcm 4.14.
Although the x3;4's and yy+1's are 0, the xa’s and yp,'s arc ours to choose,
SO We scl xa = b{,_' and yy = a{"'; that is,

x=(-0 B 0 B 0 bl 0 BT 0
k=0

(all odd entries are zero) and similarly for y. The sequences x and y arc called up
samples of the sequences b/~' and a/~'. We use the U to denote the up-sampling
operator, so x = Ub/~" and y = Ua/~'. The rcconstruction formula then takes
the compact form - -

al = LUa’~' + HUK/™

We illustrate the reconstruction step in Figure 4.23. The up-sampling opcrator is
replaced by the symbol 2 1.

o’

aj'] .?.T L

Figure 4.23. Haar reconstruction diagram
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44 SUMMARY

In this section, we present a summary of the ideas of this chapter The format
is a step-by-step proccdure used to process (compress or denoise) a given signal
vy = f(t). We will let ¢ and ¥ be the Haar scaling function and wavelet.

Step 1. Sample. If the signal is continuous (analog), v = f(t), where ¢t rep-
resents time, choose the top level j = J so that 27 is larger than the
Nyquist rate for the signal (see the discussion just beforc Theorem 2.23).
Let

al = fk/2").

In practice, the range of & is a finite interval determined by the duration
of the signal. For example, if the duration of the signal is 0 <t <1,
then the range for k is 0 <k <27 — 1 (or perhaps |1 </ < 27). If the
signal is discrete to start with (i.c., a sequence of numbers), then this
step is unneccssary. The top level a] is set equal to the kth term in the
sampled signal, and 27 is taken to be the sampling ratc. In any case, we
have the highest-level approximation to f given by

f1x) =) al 2’ x — k).
keZ

Step 2. Decomposition. The decomposition algorithm decomposes f; into
fr=wy 0+ 4w+ fj,

where

wia =Y bY@ x =1,

leZ

fi-1= Zaf—|¢(2j"'x =1).

leZ

The cocfticients, b,j" and n,j_I are detcrmined from the a’ recursively
by the algorithm

al ™' = DL’ ). (4.18)
bi~' = DH(a/ ). (4.19)

where H and L are the high- and low-pass filters from Section 4.3 3.
When j = J,a] ™" and b] " are determined by aj , which are the sam-
pled signal values from Step I. Then j becomes J — | and a]~* and
b{~? are determined from a; ~'. Then j becomes J — 2, and so on, until
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either the level reached is satistactory for some purpose or there arc too
few cocfficients to continue. Unless otherwise stated, the decomposition
algonthm will continue until the j = 0 level is reached. that is,

fr=wso 4+ +ug+ fo

Step 3. Processing. After decomposition, the signal is now in the form

fi(x) = Z wj + fo (4.20)

Jj=0

= Z (bexp(zlx —k)) +) alex—k). (421)

he/ kes/

The signal can now be filtered by modifying the wavelct coefficients b .
How this is to be done depends on the problem at hand. To filter out all
high frequencies, all the b; would be set to zero for j ahove a ccrtain
value. Perhaps only a certain segment of the signal corresponding to
particular values of k is to be filtered. If data compression is the goal,
then the b,{ that are below a ccrtain threshold (in absolute valpe) would
be set to zcro. Whatever the goal, the process modifies the b} .

Step 4. Reconstruction. Now the goal is to take the modified signal, f,, in the
form (4.21) (with the modified b}) and reconstruct it as

=) alp@'x—k).

heZ

This is accomplished by the reconstruction algorithm discussed in
Section 4.3.3:

al =LUa’~' + HUp ™! (4.22)

forj=1,....J. When j = I, the a] are compuled from the a} and b).
When j = 2 the a; are computed from the a] and b} and so fonh The
range of k is determlned by the time duration of the signal. When j = J
(the top level), a‘ represents the appr0x1malc value of the processed
signal at tlme x = k/27. Of course, these ak arc different from the
original a/ due the modification of coefficients in Step 3.

EXERCISES

I. Let ¢ and ¥ be the Haar scaling and wavelet functions, respectively Let
V; and W; be the spaces generated by ¢(2/x — k), k € Z, and ¥ (2/x — k).
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k € Z. respectively. Consider the function defined on 0 < x < 1 given by

-1, 0<x<l/4,
4, 1jd<x<1)2,
2, 1/2<x <3/4
-3, 3/4<x<l.

fx) =

Express f first in terms of the basis for V> and then decompose f into its
component parts in Wy, Wy, and V. In other words, find the Haar wavelct
decomposition for f. Sketch each of these components.

2. Repeat exercise 1 for the function

2, 0<x<l/4.
_ ) -3 14=x<l/2
FO=1 1 1j2<x <3
3, 3/4=<x<,

3. Il A and B are finite-dimensional, orthogonal subspaces of an inner product
spacc V, then show

dim(A @ B) =dimA 4+ dimB.

If A and B are not necessarily orthogonal, then what is the rclationship
between dim(A + B), dimA, and dimB?

4. (a) Let V, be the spaces generated by ¢(2"x — k), k € Z, where ¢ is the
Haar scaling function. On the interval 0 < x < I, what are the dimen-
sions of the spaces V,, and W, for n > 0 (ust count thc number of basis
elecments)?

(b) Using the result of problem 3, count the dimension of the space on the
right side of the cquality

Vi=Wo_ W, :6...06 Wy & V.

Is your answer the same as the one you computed for dimV, in part (a)?

5. Let ¢ and ¢ be the Haar scaling and wavelet functions, respectively. Let V;

and W; be the spaces generated by ¢(2/x — k), k € Z,and y(2/x — k), k €

Z, respectively. Suppose f(x) =Y, ax¢(2x — k) (ax € R) belongs to V.

Show explicitly that if f is orthogonal to each basis element ¢ (x — ) € V,,
for all integers /, then ay4.; = —ay for all integers [ and hence show

f) =) aypx—1) €W

les
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6.

HAAR WAVELET ANALYSIS

Reconstruct g € V3, given these coefficients in its Haar wavelet decomposi-
tion:

2= 1/2.2.5/2.=3/2], b =1=3/2,—-1.1/2,—1/2).

The first entry in cach list corresponds to k = 0. Sketch g.

. Reconstruct # € V5 over the interval 0 < x < |, given the following cocffi-

cients in its Haar wavelet dccomposition:
a' =[3/2, -1, b'=[-1,-3/2), b =[-3/2.-3/2.-1/2,—1/2]}.

The first entry in cach list corresponds to k = (. Sketch h.

The remnaining problems require some programming in a language such as
MATLAB, Maple, or C. The code in Appendix C may be useful.

. {(Haar wavelets on |0, 1]). Let n be a positive intcger, and let f be a contin-

uous function defined on [0, 1]. Let hy (1) = /n@(nt — k), where ¢(¢) is the
Haar scaling function (which is 1 on the interval [0, 1) and zero elscwhcere).
Form the L? projection of f onto the span of the i;'s,

fo={LihaYho+ -+ {f  hyoi)hn-

Show that f, converges uniformly to f on [0, |]. For f(1) =1 —12, use
MATLAB or Maple to find the Haar wavelet decomposition on [0, 1] for
n =4, 8, and 16. Plot the results.

. Let

£(1) = e™*/1% (sin(21) + 2 cos(4r) + 0.4sin(7) sin(50r)) .

Discretize the function f over the interval ) <t <1 as described in
Step | of Section 4.4. Use n =8 as the top level (so there are 2%
nodes in the discretization). Implcment the decomposition algorithm
dcscribed in Step 2 of Sectlion 4.4 using the Haar wavelets. Plot the
resulting levels, fj_) € V;) for j =8...1 and compare with the original
signal.

(Continuation of exercise 9). Filter the wavelct coefficients computed in
excreise 9 by setting to zcro any wavelet coefficient whose absolute value is
less than tol = Q 1. Then reconstruct the signal as described in Section 4.4.
Plot the reconstructed fy and compare with the original signal. Compute the
relative /% differencc between the original signal and the compre.sed signal.
Experiment with vanous tolerances. Keep track of the percentage of wavelet
coefficients that have been filicred out.
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11. Haar wavelets can be used to detect a discontinuity in a signal. Let g(t) be
definedon 0 <t < | via

0. 0<t <711,

BO=V 1 17<r <,

Discretize the function g over the intcrval 0 < < | as described in Step
1 of Section 4.4. Use n = 7 as the top level (so there are 27 nodes in the
discretization). Implemcnt a 1-level decomposition. Plot the magnitudes of
the level 6 wavelet coefficients. Which wavelet has the largest coefficient?
What ¢ corresponds to this wavelet? Try the method again with 7/17 replaced
by 8/9, and then by 2/7. Why do you think the method works?



