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1.10 SEVERAL-DIMENSIONAL FOURIER SERIES

Consider the standard n-dimensional rcal number space R" and the
“lattice” Z" < R" of points with integral coordinates. A function f on R"
is said to have “periods from Z"" if it is periodic (of period 1) in each of its
n variables:

S(x) = flx+k) forevery keZ".

If: you like, you can think of such a function as living on the standard
n-dimensional torus

T x = (X150 Xn)s O0x; <1, I gign.

The relation between R", Z", and T" can be expressed as T" = R"/Z"; for
n = 1, this is simply the statement that the circle can be pictured as the real
numbers mod [.

1. Fourier Series on a Standard Torus
The space L2(7™) is the set of measurable functions f on the standard torus
T" with
' 1
17 = [ oo = | o [ 10k O, < 0.

EXERCISE 1. Check that finite sums of products f;{x,)...f,(x,) of
functions from L*(S') span L2(T™).
By Exercise 1, the exponentials
e, (x) = "' * = exp[2ni(k, x, + - +k,x,)] = e, (x,) ... &, (x,)

form a unit-perpendicular basis of L2(7™) as k =(ky, ..., k,) runs over the
lattice of integral points Z". Any function fe L*(T") can be expanded
into an n-dimensional Fourier series

f"_‘kz f(k)ek

&2
with coefficients

J6) = red = [ ferax,
and there is a Plancherel formula

8 = [ 1172 = 171 = S 170,
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The extension of most of the one-dimensional results developed in Scctions
1.4-1.8 is easy, although some small technical changes must be made. The
following sample will suffice.

EXERCISE 2. The problem of heat flow on T" is du/dt = Au/2 in which
A = 0%/ox 2 + -+ 0/dx,2. Compute the solution and check that it tends
to § f(x)d"x as tfco for any nice initial temperature f. Hint: Imitate Sub-
section 1.7.3, first for n =2 and then for general n.

2*. Application to Random Walks

Polya [1921] discovered a very beautiful application of several-dimensional
Fourier series to “random walks.” Think of a particle moving on the d-
dimensional lattice Z* according to the following rule. The particle starts
at time O at the origin and moves at time # > | by a unit step e, to a neigh-
boring lattice point; for example, if d = 3, the possible steps are

e=(+10,0), (0,+£1,0), and (0,0, %1).

The position of the particle at time # > 1 is the sum of the individual steps:
s,=@e,+ - +e, The step e, is statistically independent of the preceding
steps e;: j<n, and the possible steps are equally likely at each stage. This
means that

Pe,=¢€,,....,.0,=¢,) = Ple;=¢) x -+ x P(e,= )
= (2d)""

for any fixed unit steps e,, ..., e,, in Which P(E) means “the probability of
the event E.” The problem is to compute P(s,=k) and to study the be-
havior of s, for ntfoo. Pdlya’s idea is to think of P(s,=k) as the Fourier
coefficient f(k) of a function f& L*(T°):

1) = Y, P(s, = k)e¥™*~.
kezZ*

This sum is just the “‘expectation” or “mean value” of exp(2nis,-x) and
is easily computed using the independence of the individual steps:

f(x) = Y- Y (2d) " exp(2nie, - x) --- exp(2nie, - X)
= [@d)"" L exp(2nie, - x)]"

= [(cos 2nx, + -+~ + cos 2nx,)/d]"
= [fo(x)]".
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Pélya's formula is immediate from this;

Plo,=k) = 0 = (DK = [ fpe e,
In particular,

Pe,=0) = [ 1z,

and since | f3} < 1, the expected number of times the particle visits the origin
can be expressed as

i P(s,=0) = litx}a i £"P(s, =0)

nm0 [ nm0

—tim| YR

el JTe a=0

= lim| (I-¢f)""

el Jre
=1 (I-fp~!
Tl

by an application of monotone convergence to the region where 0 < f; < L.
Because

1 an?|x]? 4n?|x]?

X = fy €« ——

2™ 2 Jis =34
for small |x|, the integral diverges for d <2 and converges for d = 3. Polya
used this to prove a very striking fact about the ultimate behavior of the
walk:

P(s,=0,i.0) =1 for d<2,
23

P(lim|s,| =) = | for d .
njo

PROOF FOR d>3. The integral [(I1—-f)~'<oo says that the ex-
pected number of times that the particle visits the origin is less than oo.
This can happen only if the actual number of visits is less than oo with
probability 1, and since the origin is not special in any way, the same must
be true of every lattice point in Z“. But this means that for any R < w, the
particle ultimately stops visiting the ball |k| < R, and that is the same as
to say

P(lim|s,| =) = 1.
nto
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PROOF FOR d<?2. At time n= 1, the particle steps to one of the 2d
nearest neighbors of the origin. The problem is to check that the probability
p of ultimately returning to the origin is I. But that is self-cvident as soon
as you reflect that the probability of visiting the origin m or more times
(including the visit at time n = 0) is p™ ', for then the probability of precisely
m visits is

pm-l _~pm - pm—l(l_p)'

and if p were less than I, the expected number of visits would be

Y mpmt(l-p) = (1-p)~' < o,

mel
contradicting the evaluation [(1 /)" = o0 (d <2). The proof is finished;
for additional information on the subject, see Feller [1968, Vol. 1, pp.

342-371].

3*,  Fourier Series on a Nonstandard Torus

A variant of the several-dimensional Fourier series of Subsection | arises
by looking at functions on a nonstandard torus. For simplicity, only dimen-
sion n = 2 is discussed. Pick numbers ~ oo <n < co and b > 0 and introduce
the [nonstandard] lattice Z < R? of all plane points of the form

w = j(1,0) + k(a,b)  withintegral j and k,

as in Fig. 1. As for the standard lattice of article 1, a function with *““periods
from Z” can be thought of as living on the torus T = R?*/Z obtained by
identifying opposite sides of the “fundamental cell” shaded in the figure.
Define Z' to be the “*dual lattice™ of points w'e R? such that the inner
product w’-w is integral for every w e Z.

FIGURE 1

EXERCISE 3. Z'is the lattice of points
w' = j(1, ~a/b) + k0, 1/b) with integral j and k;

in particular, the standard lattice (=0, =1} is its own dual. Check this.




