Chapter 3

The Short-Time Fourier Transform

We have seen that ideal time-frequency analysis faces a lundamental obsta-
cle in the form of the uncertainty principle. Nevertheless, the example of the
musical score indicates that a reasonable and useful form of time-frequency
analysis should still be possible and realizable.

In this and the following chapters we will discuss several ideas for joint
time-frequency representations. We first look at a linear and continu-
ous representation, the short-time Fourier transform. The reader may
think of the short-time Fourier transform as the mathematical analogue
of the musical score. We will build the theory of time-frequency analy-
sis almost entirely on the short-time Fourier transform because most other
time-frequency representations can be expressed in terms of the short-time
Fourier transform.

3.1 Elementary Properties of the Short-Time
Fourier Transform

The idea of the short-time Fourier transform is iimplicit in the discussion
of Chapter 2. In order to obtain information about local properties of f,
in particular about some “local frequency spectrum,” we restrict f to an
interval and take the Fourier transform of this restriction. Since a sharp cut-
off introduces artificial discontinuities and can create unwanted problems,
we choose a smooth cut-off function as a “window.”

Definition 3.1.1. Fix afunction g # 0 (called the window function). Then
the short-time Fourier trausform (STFT) of a function f with respect to g

is defined as

Vof(zow) = fglt—z)e ™ dt, for z,w € RY. (3.1)
Rd
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Figure 3.1: The short-time Fourier transform of a multi-component signal.

Figure 3.1 shows the absolute values of the short-time Fourier transform
of the multi-component signal of Figure 2.1. The window was chosen to
be a bump function similar vo the oune in Figure 1.1(a). The pray level is
proportional to the magnitude of |V, f|, so that dark regions indicate the
main tiime-frequeucy concentration of f. The short-timme Fourier transforin
separates clearly the three compounents of f: the first segment corresponds
to the pure frequency, the two bands in the second segment indicate the
superposition of two frequencies, and the third segiment represents the chirp
with its linearly increasing frequency.

REMARKS: 1. If g is compactly supported with its support centered at the
origin, then V, f(z,-) is the Fourier transform of a segment of f centered
in a neighborhood of x. As z varies, the window slides along the z-axis to
different positions. For this reason the STFT is often called the “sliding
window Fourier transform™ (Figure 3.2). With some reservations, V, f(z, w)
can be thought of as a measure for the amplitude of the frequency band
near w at time x. In this sense V, f(z.+) is a substitute for the impossible
“instantancous frequency spectrum™ at .

2. In signal analysis. at least in dimension d = 1. R2¢ is called the
time-frequency plane, and in physics R? is called the phase space.

3. The STFT is linear in f and conjugate lincar in g. Usually the window
g is kept fixed. and V, f is considered a lincar mapping from functions on
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Figure 3.2: The short-time Fourier transform.

R? to functions on R??. Clearly the function V, f and the properties of the
mapping f — V,f depend crucially on the choice of the window g. We
will return later to the question of how the STFT depends on the window.
Chapters 12.1 and 13 are devoted entirely to the investigation of good
window classes. For window optimization see also {180, 181].

We will spend some time becoming acquainted with the basic properties
of the STFT. The next lemma lists several useful equivalent forms of the
STFT. Recall that " is the involution g*(z) = g{—z).

Lemma 3.1.1. If f,g € L*(RY), then V, f is uniformly continuous on R?¢,
and

Vof(zw) = (f - T,3) (w) (3.2)
= (f, M.T.qg) (3.3)

= (f,TLM_.g) (3.4)

= e (£ T,0) (—x) (3.5)

= e MWV, fu, —1) (3.6)

= e ([ x Mgt ) () (3.7)

= (f» M_,5%)(w) (3.8)

=e ™ | f(t+5)g(t— e T de. (3.9)

J R4
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Proof. The identities are mostly a matter of notation and are left as exer-
cises. The key ingredients are Parseval’s formnla (1.2), the commutation
relations (1.7), and formulas (1.8), (1.9), and (1.17). The uniform conti-
nuity of V, f follows from the continuity of the operator groups {T:} and
{M_}, that is. the facts

‘lin‘%) 1Tef — flle = 0.

and

im [ My f — fll2 = lim |7/ = flla = 0.
w—0 w—0

These formulas contain different faces of the short-time Fourier transform.
In (3.2) and in (3.5) the STFT is written as a (local) Fourier transform of
fand f, according to the main idea for its definition, whereas in (3.7) and
in (3.8) the STFT is written as a convolution. In (3.3) and (3.4) V,f is
written as an inner product of f with a time-frequency shift. This form is
most convenient for formal manipulations and reveals some of the deeper
structures of the STFT (see in particular Chapter 9). The symmetric form
JF(t+ %) 5(t — £)e~ ™+ dt is often called the cross-ambiguity function.
1t plays an important role in radar and in optics {56, 258]. Except for the
phase factor e~™*“  which can be frequently neglected. it coincides with
the STFT. See also Chapter 4.2.
Formula (3.6), namely,

Vof (z,w) = ¥4V, f(w, ~z) (3.10)

is the fundamental identity of time-frequency analysis. It combines both f
and f into a joint time-frequency representation. In this representation the
Fourier trausform amounts to a rolation of the time-frequency plane by an
angle of 7/2.

In Lemma 3.1.1 we have emphasized the linearity of the STFT in the
case of a fixed window g. Alternatively, the STFT may be consgidered as
the sesquilinear form (f,g) — V,f. Let f ® g be the (tensor) product
f®gle.t) = f(z)g(t). let T, be the asymmetric coordinate transform

T.F(x,t)=F(t,t —x), (3.11)
and let F; be the partial Fourier transform
FoF(z,w)= [ F(x.t)e 2wt (3.12)
Rd

of a function F on R?¥. Using this notation, Definition 3.1.1 can be refor-
mulated in terms of a factorization of the STFT.
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Lemma 3.1.2. If f,g € L*(RY), then
Vof = FT(f@3§). (3.13)

The Dormain of the Short-Time Fourier Transform. In Defini-
tion 3.1.1 we have been unprofessionally sloppy and have not specified a
domain for f and g. Clearly, if f,g € L*(RY), then f-T,5 € L}'(R%), and
Vyf(z,w)=(f" T+3) (w) is defined pointwise. Similarly, if g € L#(R?) and
fe LP' (R%), then by Hélder’s inequality f - Tpj € LY(RY) and again the
STFT is defined pointwise.

Writing the STFT as the inner product V, f(z,w) = (f, M, T,g) is nseful
for extending it to sitnations when the integral is no longer defined. As a
rule of thumb, we may cousider the STFT, whenever the bracket (-,) is
well defined by some form of duality. For example, if B is a Banach space
contained in S'(RY) that is invariant under time-frequency shifts, then the
STFT is defined when f € B, g € B* or f € B*,g € B. More generally,
V, f is well-defined for all tempered distributions f € S’(R¢), provided that
g € S(RY). The detailed study of the STFT on S’ and the time-frequency
analysis of tempered distributions will be pursued in Chapters 11 and 12.

With Lemmma 3.1.2, the domain of the STFT can be extended even
further. Note first that both operators 7, and F, are isomorphisms on
S'(R*). If f.g € S'(R"), then f & g € S'(R**), and consequently V,f =
FaT(f 3 € 8'(R*) as well. Thus V,f is a well-defined tempered distri-
bution, whenever f, g € S'(R9).

The next property is sometinies called the covariance property of the
STFT.

Lemma 3.1.3. Whenever V, f 1s defined, we have
Vo(Tu My, f)(z,w) = e“Z"i'“'“qu(x — U, — 7)) (3.14)
for z, u,“u,-, n € R In particular,
Ve(Tubdn f)(z. @)l = Vo f (£ — w0 = )]

Proof. We substitute the commutation relation M_T_ M,T; = gl w
M, _,T; -, into the definition and obtain

V_C,(Tuhf,,f)(:c, w) = (Tu]\'{ufs M,T.g)
=(f. Iw—f)T—uA'{.uTxg)

= e FUWY fr —uw — 7).
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3.2 Orthogonality Relations and Inversion Formula

The STFT enjoys several properties similar to thosc possessed by the
ordinary Fourier transform. The following theorem on inner products of
STFT's corresponds Lo Parseval’s formula (1.2), and will be used frequently.

Theorem 3.2.1 (Orthogonality relations for STFTY). Let f1, fo. g1. g2
€ L*(RY): then V, f, € L2 (R™) for j = 1,2, and

(Vou 1. Ve F2) Lo geay = (1 f2) (91, 92) - (3.15)
Proof. We first assume that the windows g, are in L' N L>(R) C L*(R9).
so that f, - Tu.g, € L*(RY) for all £ € RY. Therefore Parseval’s formula
applies to the w-integral and yields
/ / Vo, file,w) Vg, fa{w, w) dw dix
JRA JRA
- [ h T ) G Tl ) s
Re \J x4
-/ ( L TR0 sl D et - m)cu.) dz.
RY R
Here f; fo € LY(RY, dt) and g7 g2 € LY(RY, da), therefore Fubini’s theorem

(Appendix A.13) allows us to interchange the order of integration. We
continue as follows:

Vi o Vo Fahingn, = [ (OT2D ( | o= et =) dx) at

= (fi, f2){91.92) -

The extension to general g; € L*(R%) is done by a standard density argu-
ment (see Appendix A.1)., With g, € L! N L™ fixed, thc mapping g, —
(Voo 1, Vg, f2) L2(r24) 18 a linear functional that coincides with (f1. f2) (g2, g1)
on the dense subspace L' N L™=, It is therefore bounded and cxtends to all
g2 € L*(R%). In the same way, for arbitrary fi, fo and go € L?(R%), the con-
jugate linear functional g; — (Vy, f1.V,, f2) L2(x2ey equals (f1, f2) (g1,92)
on L' N L™ and extends to all of L?.
The orthogonality relations are therefore established for all f,, g; € L2(RY).

Second Proof of the Orthogonality Relations. We use the factorization
(3.13) of the STFT. Since on [JZ(R“) both operators F and 7, are unitary,
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we dechice the orthogonaliry relations as follows:
Vo 1V £2) 2z = (FaTa(f1 9 61), FoTa( f2 ® 2))
= (fl & .(]-l . f’d = _q..'z)[’?(grl)
= (1. f2) {g1.92) -

Corollary 3.2.2. If f,g € L*(RY), then

Vo fll2 = [ £ll2llgll2 -
In particular, if |lgll2 = 1 then
Iflla =11V fll2 for all f € L*(RY). (3.16)
Thus, in this case the STFT is an isometry from L*(R%) into L2(R%),

It lollows from (3.16) that f is completely determined by V, f. Further-
more, the implication (f. M, T,g) =0, Va.w € R* = f = 0 is equivalent to
saying that for cach fixed g € L?(R?) the set {M,T.g : z,w € R?} spans
a dense subspace of L2(RY). This still leaves open the question of how f
can be recovered from V, f. We will show that the orthogonality relations
imply a remarkable inversion formula.

For the formulation of such an inversion formula. we need a brief expla-
nation of vector-valued or operator-valued integrals. In this book vector-
or operator-valued integrals are always understood in a weak sense (unless
specifically stated otherwise). If g is a function on R? that takes values in
a Banach space B, that is, g(z) € B for all z € R?, then [ = [, g(x)dz
means that

(fLh) = /RA (g9(z), h) dz

for all h € B*. If the mapping (h) — [g{(g(z),h) dz is a bounded
(conjugate-)hinear functional on B*, then ¢ defines a unique element f €
B**. Although g(x) € B, in general we can only say that the vector-valued
integral is in the bidual B**. This technical difficulty need not worry us,
because we will work mostly with reflexive Banach spaces, that is, B* = B.

The most important vector-valued integrals in time-frequency analysis
are superpositions of time-frequency shifts of the form

f= // F(z,w)M_ Tgdzdw. (3.17)
JR24
For example. if F € L2(R*!), then the conjugate-linear functional

€h) = / /  F(eo) T BT g) da d (3.18)
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is a bounded functional on L*(RY). To see this, apply the Cauchy-Schwart,
inequality to (3.18) and use Corollary 3.2.2:

[eCR)] < (EN2 IVohlle = EH2 gl 12 - (3.19,
This means that £ defines a unique function f = [p., F(x,w) M, Thgdrdw ¢
L2(R%) with norm || fll2 < [|Fllzllgllz and satisfying €(h) = (£. h).

We arc now ready to state a precise version of the inversion formula for
the STFT.

Corotllary 3.2.3 (Inversion formula for the STFT). Suppose that g. -
€ L2(RY) and (g,7) # 0. Then for all f € L*(RY)

1 :
f=ta / / Vo f(,w) My Ty dew dz (3.20)
v 9) J SR
Proof. Since V, f € L?(R?!) by Corollary 3.2.2, the vector-valued integral
M 1
F=tm / /R Vo () MuTey do o

is a well-defined function in L2(RY). Further, using the orthogonality rcla-
tions, we see that

. 1 -
{f.h) = Iex) [/de Vo f(z,w) (hy MuTey) de dw

1
= Vof . V4h h
) { )= {f.h).
Thus f= f. and the inversion formula is proved. |

REMARKS: 1. The inversion formula (3.20) shows that f can be expressed
as a continuous superposition of time-frequency shifts with the STFT as
weight function. In this sense, (3.20) is similar to the inversion formula
for the Fourier transform, that is, f(z) = [ f(w)e?™™“ dw. However,
in Fourier inversion the elementary functions ¢?™'*% are not in L2(R%),
whereas in Corollary 3.2.3 the clementary functions M, T,y are particu-
larly nice functions in L2(R?).

2. The vector-valued integrals of the form (3.17) are closely related
to the STFT itself. Let A, be the linear operator defined by A,F =
ffku r,w)M,Trgdzdw. By (3.19) A, is a boundecl operator from Lz(IR“")
onto L*(R?). Moreover, A, is exactly the adjoint operator of the STFT V,
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(viewed as an operator from L2(RY) to L z(de))' This claim follows from
the computation

(AgF,h) = // Fa,w){M,Trg, h) dedw
JJ g2

= (F,Vohy = (VS F. by,

where h € L*(RY) and F € L*(R?*!). Thus indeed Vs = A,. The inversion
formula (3.20) thus reads as

— V>V, =1. (3.21)
(vg) 7

This point of view will be important in Chapter 11, where we extend the
theory of the STFT to Banach spaces and norms other than the £2-norm.

The inversion formula reveals what kind of time-frequency analysis is pos-
sible despite the uncertainty principle. Suppose that v is a “nice” function
with essential support T C RY and essential spectrum (=supp¥) 2 € R,
in the sense of Definition 2.3.1 for small ¢p and c¢q. Then M, T.v is es-
sentially supported on z + T, and its essential spectrum is w 4 Q. Thus
M,T,7 occupics the cell (z +T) x (w + Q) in the time-frequency plane,
and the size of V, f(x,w) measures the contribution of this time-frequency
atom in the decomposition of f. The uncertainty principle of Donoho and
Stark (Theorem 2.3.1) limits the possible time-frequency concentration to
T 9] > 1— 6.

At least in a qualitative sensc, we can now understand the role of the
window for the properties of the STFT. Good time resolution requires a
window with small support, that is, small [T, but this comes at the price
of a poor frequency resolution since |Q] > IT;—f becomes large. In the same
way, good frequency resolution by means of a band-limited window implies
poor resolution in time. These brief remarks demonstrate the influence
of the window on the time-frequency properties of the STFT. In prac-
tice one will choose a window such that both ¢ and § decay rapidly. For
example, a Schwartz function or a C*-function with compact support is
suitable. However, a characteristic function is not! Indeed, if g = x(,1¢;
then V, f provides an accurate picture of the temporal behavior of f since
Vo f(z,0) = 2[00 f(¢) dt is the average valuc of f in a neighborhood of

l_c—ﬂwv.wJ

x. On the other hand. since Y[y (w) = ﬂ;i:, g decays slowly and

is not even in L(R?), the STFT V, f(z,w) = V; f(w. —z)e2™* provides a
completely inadequate frequency resolution. In particular, one signal pro-
cessing application known commonly as “signal segmentation™ amounts to
using a STFT whose window is a characteristic function. The lack of fre-
quency resolution then presents itself as a severe problem in this approach.
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Figure 3.3: The short-time Fourier transform of a multi-component signal
witl! respect to a “short window.”

Figures 3.3 and 3.4 illustrate the dependence of the STFT of the window.
Both plots show the STFT of the multi-component signal of Figure 2.1. In
Figure 3.3 the window is a bump function with small support and large
spectrumn. Consequently, the STFT possesses good time resolution, which
is clearly visible in the neat separation of the three components of the signal.
On the other hand, the wide frequency bands and the interference patterns
in the second segiment show the poor frequency resolution of this STFT. By
contrast, the window in Figure 3.4 is a bump function with large support
and narrow spectrum. In this case, the STIT provides a clean resolution of
the frequencies in each segment of the signal. However, the time resolution
is only mediocre, the transitions between the segments arc fuzzy, and the
chirp is badly localized.

Schematically the time-frequency analysis of a signal consists of three
distinct steps: '

A. Analysis: Given a signal (or image) f, its STFT V,f with respect
to a suitable window is computed, and is interpreted as a joint time-
frequency information for f.

B. Processing: V, f(z,w) is transformed into some new function F(r w).
A typical processing step often contains a truncation of V,f to a
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Figure 3.4: The short-tiine Fourier trausformn of a multi-component signal
with respect to a “long window.”

region where something interesting seems to happen or where |V f|
is above a given threshold. In an application-oriented language, one
speaks of feature extraction, separation of signal components. and
signal compression.

C. Synthesis: The processed signal (or image) is then reconstructed by
using the modified inversion formula

f= / / F(a,w)M,Tyydrde (3.22)
R2d

with respect to a suitable synthesis window 4. We remark explicitly
that distinet windows may be used for the analysis and synthesis.

Theoretical physics uses a different language to describe the inversion
formula (3.20) [1,177,207). The time-frequency shifts T; M, g of a fixed
window are called generalized coherent states, and the inversion formula is
interpreted as a decomposition of a quantum-mechanical state [ into co-
herent states. The coherent states in the strict sense are the time-frequency
shifts of Gaussian functions. In this case, (3.20) amounts to a decomposition
into states of minimal uncertainty. It is customary to write the inversion
formula as a superposition of rank one operators. Let H be a Hilbert space,
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and let « ® ¢ denote the rank one operator defined by (u © 8)(h) = (h,v)u
for u,v.h € H. Then (3.20) is the following continuons resolution of the
identity operator
1
(v-9) J Jgoa
Next we prove a strong version of the inversion formula. Tts formula-
tion resembles the definition of the Fourier transform of an L?-function by
au approximation procedure (see the discussion of Plancherel’s theorem in
Chapter 1.1). For thie approximation we consider a nested sequence of com-
pact sets K, C R?¢ that exhaust R?¢. This means that | J, ., Kn = R¥
and K, Cint K,,41. Then any compact set is contained in some K,. The
cubes [—n,n)?® or the balls B(0,n) = {z € R* : |z| < n} are common
choices for K,,.

Theorem 3.2.4. Fiz g,v € L?(R%) and let K,, C R* forn > 1 be a nested
ezhausting sequence of compact sets. Define f,, to be

// Vof(m w)M Teydrdw.
\’l
Then limy oo | f — f"||2 =0.

Proof. Using the Cauchy-Schwartz inequality and Corollary 3.2.2, we esti-
mate for h € L?(RY) that

M, Toy 9 M, Tegdadw.

1 [
K] = s |/ - V, f(z,0)Voh(z, ) dz dw

oy el lz 1Vl

o
)

Therefore for each n, f, is a well-defined element of L?(R?), and further-
more, |[fallz < 1(v, @) llgll2 17ll2 | fll2 by Corollary 3.2.2. Next, we esti-
mate similarly that

(f = fa. k)| = HTleI |<//R—//K) Vo (z,0) Vo i 0) dz

_ I(v - !// Vy (2, 0) V3R, 0) da du

1/
: - z.w)|? dadw
.9l VLAl (/ KﬁIng(.n. )|” dad )
1/2
N :('7 9)l Ivl1z1lA112 (// !V’lf T,w) l da d.u) .

2

IN
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Since this is true for all h € L?(R?), we therefore have

“f - fn”2 = ||IS|:-UZI |(f - fnsh)l

12
1 2
] V. T T dw .
< |(7,g)||h“2 (//h"| oS (row)|” dxc )

Since V, f € L*(R??), and K, is exhausting, the right-hand side becomes
arbitrarily small as n increases. |

Benedetto, Heil, and Walnut [16, 142] use approximate units for their
version of the inversion formula. Let {u,} be an approzimate unit in L' N
FLYRY) and let g.v € L'nL>(RY). Given f € LP(RY),1 < p < o0, define

1 - F
0= //W V, f(x,0) M, o ()itn (w) dw da.

Then limn oo || f — fullp = 0.

Under additional assumptions and with proper mathematical care, the
inversion formulas of this section can be extended to other function spaces.
For instance, in Chapter 11.2 we will extend Corollary 3.2.3 to tempered
distributions.

3.3 Lieb’s Uncertainty Principle

In the discussion of the inversion formula for the STFT we saw how the
time-frequency resolution of the STFT depends on the choice of the window
function g. In particular, the time-frequency resolution of V, f is limited
by the size of the essential supports of g and §. The classical uncertainty
principle (Theorem 2.2.1) for g thus implies an uncertainty principle for
Vyf. By contrast, in this section we present uncertainty principles that
apply directly to the STFT. They are the first manifestation of the following
generic principle:

A function cannot be concentrated on small sets in the time-
frequency plane, no matter which time-frequency representation
is used.

Here is an easy version of such an uncertainty principle. It is analogous
to the uncertainty principle of Donoho and Stark for the pair (f, f) of
Chapter 2.3.
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Proposition 3.3.1 (Weak uncertainty principle for the STFT).
Suppose that || fll2 = |lglla = | and that U € R*¢ and ¢ > 0 are such that

/[IIV"“'”"”)IZ drdw 2 1 -e.

Then |U| 2 1 —¢.
Proof. The Cauchy-Schwartz inequality implies that
VoS (row)| = (J; MuTeg)l S Ifll2llglla = 1 for all (r,w) € R, (3.23)

Therefore,

1-€< //U[ng(a;,w)|2 dzdw < |V, f|1% U] < |U].

A much deeper and stronger inequality for the STFT was proved by E.
Lieb {190].

Theorem 3.3.2. If f,g € L*(R?%) and 2 < p < oc, then
/A,,Wyf(-"’w)lpdwdw <3SNz Ngllz)? - (3.24)

Proof. Let p’ be the conjugate index defined by ;—J + ;’; =1 Since2<p<
0o, we have 1 < p’ < 2. We note that f- 7§ € L*(R%) by the Cauchy-
Schwartz inequality. Moreover, since V, f(z,w) = (f - T.§) (w) € L?(R2%)
by Corollary 3.2.2, we conclude from Fubini’s theorem (Appendix A.13)
that (f - T.g) € L2(R%) for almost all = € RY. Thus f - Tp§ € L' N L2(RY)
for almost all £, which implies f- Ty.§ € L* (R?) for a.a. z. The Hansdorff-
Young inequality (1.4) implies

(/udlvgf(m, u))lp dw) 1/p

. t/p
Ll raf @l a)
’ /9
s ([N mael o)

, , 1/p
=g ([ v laty - o @)

7

IA

I/p

= A (17«17 (@)
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, L\ 12 —
where Ay = ((;u’)'/” p“”’) " and g*(r) = g(~x). Hence

1l = ( L (LT @I dw ) ds) "

. , oV /e
<ap ([ (1 el )" as) (3.25)

o P VY

Ap' “ |f|P * |9 |P ”p/’p' :
Now we apply Young's inequality (Theorem 1.2.1) to the functions f|p'
and |g*|?". which are clements of L2" (R), with the triple (p,g,7) being
replaced by (s.s.t), where 5 = ,‘f‘ 2 1.t = F (note that TFI=140)
We obtain

I g™ e < AZEAL AP Hls g™ s

g 2 . ’ vip' ’
However, [ [f[™ lls = (J1/(@)P "% )77% = |15 and [ lg"I”" ls = llgll} -
Inserting these into (3.25) yields

’

. ' N\ M/
1Valllo < A% (A2 AL 1A Nl
. 2 d !
= A% A2 AT | 1l gl -

. . . p . 2d/p' d/u’ d
Finally, we leave as an excrcise the verification that A% Af* /e At,/" = (%) )

REMARKS: 1. A careful analysis of the minimizing functions in the sharp
version of the inequalities of Young and Hausdorff-Young shows that equal-
ity in Lieb’s uncertainty principle is obtained if and only if f and g are
time-frequency shifts of Gaussians [190)].

2. Lieh’s paper contains a number of other important inequalities about
the STFT. Here we only mention the counterpart of Theorem 3.3.2 for the
case that 1 <p <2 If f,g€ L3R and 1 < p < 2, then

L wieaP sz (3 (7o)’ 620

Equality holds if and only if p > 1 and f,g are certain Gaussians. The
proof is similar to the one for p > 2, but is technically more involved.

3. Lieb’s uncertainty principle carries over verbatim to general locally
compact abelian groups {124).
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Next we show that Lieb’s uncertainty principle improves Proposition
3.3.1 and yiclds a sharper estimate for the essential support of Vg f (which
was apparently not previously observed).

Theorem 3.3.3. Suppose that ||flz = llglle = 1. If U C R?® and ¢ > ()

are such that
// 'ng(.v.,w)lzda‘dw >1-e,
LJ

then
2d
Ul > (1 -¢)7 (E)"__: forall p> 2.
2
In particular,
p\ %
Ul 2 sup (1 - )75 (;)”‘ > (1~ ¢)22¢.
p>2 2

Proof. We first apply Hoélder's inequality with exponents ¢ = & and ¢’ =
555, and then we use Lieb’s inequality in the second step:

I1-e< // |ng(.7:,w)|"’d.’cdw
U
p=2

2/p 2
< <//R?d |V!Jf($,w)|2'¥ dx dw) (//de XU(I,w)ql d:L‘dw)
24
2\ * 2 e
s (;,) <||f||2||9||2) )% .

Thus for all p > 2
gt (B)
vz - (5)7

For p = 4 this becomes |U| > (1 — €)?2%. |

Note that taking € = 0 in Theorem 3.3.3 yields the following lower bound
for the support of V, f:

2d

| supp V, f| > Jlim, (g) =T _ el (3.27)

In analogy to Theorem 2.3.3 for the pair (f. f), it can be shown that if
[supp V, f| < oc. then either f =0 or g = 0. See [159,173,254).
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p
3.4 The Bargmann Transform

Since Gaussian functions minimize the uncertainty principle (Theorem
2.2.1), it is of special interest to study the STFT with respect to a Gaussian
window. In the light of our previous discussion, this STFT will provide
the optimal resolution of signals in the time-frequency plane. In quantum
mechanics and in quantum optics, these states of minimal uncertainty, that
is, time-frequency shifts of a Gaussian, play an important role. They are
a widely used tool usually referred to by the naine coherent states, see
(177,207]. )

Let @(z) = 2%%¢™™" be the Gaussian on RY, normalized such that
flell2 = 1. Then

Vkpf(xa U) = 2d/4 / f(t) (3-7“(!—1)2 e'Qri“"l dt
g
=28 [ f(t) eV errt gmnetemimt gy (3.28)
Rd
= /4 gmmizw = §(a® 4 / ft)e=m® 2t - §mi)? gy
RY

Let us convert (z,w) € R* into a complex vector z = 1 + iw € C¢.
We will keep the notation consistent with R¢, that is, we will write z2 =
(z+iw) - (z+iw) and 2| =2 = (z +iw) - (z — iw) = 22 + w?. Further,
dz denotes the Lebesgue measure on €Y. Then, comparing to (3.28) the
following definition is quite natural [10].

Definition 3.4.1. The Bargrnann transform of a function f on R is the
function Bf on C¢ defined by
Bf(z) =2%4 [ fe)edrtz-mti-g2" g (3.29)
R

The (Bargmann-) Fock space F2(C?) is the Hilbert space of all entire func-
tions F' on C¢ for which the norm

IF|% = /
Czl

is finite. The inner product on F2(CY) is

F(z)lQ(e‘"“F dz

(F.G)r = /c., F(z)G(z e dz.

By means of the little calculation in (3.28), the previous results of this
chapter can be written as follows.
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t-Time

Proposition 3.4.1. (a) If f is a function on R that has polynomial growth,
then its Bargmann transform Bf is an entire function on CY. If we write
z = x4+ iw, then

Vo f(z, —w) = ™ Bf(z)e”"1:/2, (3.30)
(b) If f € L2(RY), then

1/2
1= ([, 1Breeaz) <1551

Thus B is an isometry from L3(RY) into F*(CY).

Proof. 1f | ()| = O(|t|V), then the integral (3.29) converges absolutely for
every z € C% and uniformly over compact sets in C?. Therefore one can
differentiate under the integral and Bf is an entire function.

Equation (3.30) is just (3.28) rewritten in new notation. Statement (b)
follows froni Corollary 3.2.2. |

Our next goal is to show that B is a unitary mapping from L*(R%) onto
F2(C%). In light of Proposition 3.4.1 we need only prove that the range
of B is dense in F2(C%). This requires a more detailed study of entire
functions in several variables. This should not deter the reader; all we need
are power series expansions, and thanks to multi-index notation there will
not even bhe a visible difference between the theory in one or in several
complex variables.

Theorem 3.4.2. (u) The collection of all monomials of the form

= ()" I

for a = (ay,...,aq) with a; > 0, forms an orthonormal basis for F*(C%).

(b) F2(C%) is a reproducing kernel Hilbert space, that is,
IF(2)| < |IFllz ™72 for all z € €Y.
The reproducing kernel is K,,(z) = €™ *; this means that F(w) = (F, Ky).

Proof. (a) Write each variable in polar coordinates; that is, let z; = r e,
Let us first compute the inner product of 2® with 2? restricted to the
(poly)disc Pp = {z € C?: |z]| < R}:

2
/ 2B gz = H Biemmanl gz,
Pr

ﬁ,|<R

R -
8,41 — rr?
= ”/ / 7";” ot gty =73,)8, =] dr, dg; .
0 Jo
J=1
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If o # 3, then this integral equals zero for all R > 0, and therefore

Iz . - 2
(z%,2%F = lim 2228~ dz = 0.
R—oc Pr

On the other hand, if a = 4 then

d R
PRt 20, +1 _—gp?
/ [2¢2e " ds = ” 2“/ Tja] e "Tidry | = pa,r -
Pr 7=1 0

For R = oc, by making the change of variables s = nr?, we can continue as
follows:
d Trsye d ! ol
pae =II(f (7)) =125 =
Jj=1 0 1=1 !

Consequently {,u.;,l,gz.z“ : a > 0} is an orthonormal system in L?(Pg,

2 . . .
e~ dz). In particular, {e,,a > 0} is an orthonormal system in F2(C%).
To prove completeness of {e,} in F?, we start from the power series
expansion of F in F?, which has the form

F(z) = zcﬂz".

@20

Suppose that (F,eg) =0 for all 8 > 0. Then

181 1/2 o,
Ne= lim (F— . u) A2l
(F.ea)7 rﬂ‘é:( 3! ) /pH (Za caz® 267" dz.

Since the power series in the integral converges uniformly on compact sets,
we can interchange the integration and summation to obtain

— 2 — L2
F(z)zBe™ " dy = Z co,/ 228 e ™ dz = caupR .
Pr ) Pr

Thus (F,ey) 7 = (nl8l/p11 /2 Rlim ts.rcs = 0. This implies cg = 0 for all
B and thus F = 0. Since we have already shown that {e,} is an orthonormal

system, it follows that {e4} is an orthonormal basis for F2Ch.
(b) Since F(z) = Y (F,eq)realz), we obtain by the Cauchy-Schwarz

. azl
nequality that

F(z)| £ (Z [(F, eo)}_lg)ln(z Z(_r:_l‘lznlz)ln —IFllr a2

a>0 a>0
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Thus point evaluations are continwous linear functionals on the Hilbert
space F2. It follows that for each w & C® there is a function K, € F? sucl)
that

Flw) = (F, K.). (3.31)

Expanding K, with respect to the orthonormal basis e, and applying
(3.31), we obtain I, explicitly as

Ku(z) = Z(Kw-"-'o)f €a(2)

o
= Z ea(w)ea(2)
[24
lex] .
- " ] T80 = T2 ,
al
s0 we are done. N

Equipped with the reproducing kernet K, for F2(C?), we can now prove
that the Bargmann transforin maps onto F2.

Theorem 3.4.3. The Bargmann transform is a unitary operator from
L*(R?) onto F2(CH4).
Proof. We have already seen in Proposition 3.4.1 that B is an isometry.
Thus its range is a closed subspace of F2(C?). Therefore, if we show that
B(L*(RY)) is dense in F2(C9), then it follows that B(L*(R%)) = F3(CY),
s0 B is surjective and the proof is complete.

We start, by rewriting Lemma 1.5.2 in terms of the Bargmaun transform.
Using Lemma 1.5.2 with @ = 1 and taking the normalization of ¢ into
account, we compute

Vo (TuM_p0) (i, —w) = (T, M_qp, M_,Tyv)
= T (T, M _ 0, TeM_ )

’

- eni(z—-u)-(-q—-u)e‘Zma:m.-e—7r[(x-—u)2+(fl"¢~')21/2 .

On the other hand, writing z = = +4w and w = u+1irn, we obtain after some
hookkeeping in the exponents and after applying Proposition 3.4.1 that

B(T M_n)(2) = e""”'“c"hlg/?V",(Tu!\{_,,cp)(:z, -w)

e7riu-r7(_:,—1|'(u2+112)/261r(::t-u+n-w+1(u.»-u—z-n))

— €rriu,~77C—1r|w|"'/2(:1r-xi.--z )



We can rewrite this in short as
B(T.M_,0)(z) = e™v e~ /2 ¢ (7). (3.32)
This shows that the reproducing kernel of F2(C%) is in the range of B.

Now suppose that for some F € F?(CY) we have (F.Bf)r = 0 for all
fe€ L2(R%). In particular, using (3.32) we have for all w € C¥ that

0 = (F, B(TuM_,%))
— e—1riu~7] e—ﬂ“’|2/2 (F. Kw)

= MY c—ﬂ'lwlz/Z F(w).

Therefore F = 0. and consequently the range of B is dense in F*(C%). W

Since the Bargmann transform is a unitary operator, the pre-image of the
orthonormal basis {eq } consisting of the functions H, = B~ 'e, € L*(R?) is
an orthonormal basis for L2(RY). The functions H, are called the Hermite
functions. Even without an explicit formula for H, we can derive their
most important property for Fourier analysis.

Proposition 3.4.4. The Hermite functions are eigenfunctions of the
Fourier transform; specifically, for all o > 0 we have

Ho = (=i)lelH, .
Proof. Combine the fundamental identity (3.10) of time-frequency analysis
with Proposition 3.4.1. Writing 2z = z + iw € CY, we have
VoHo(z, ~w) = ¢ “BH,(z) e mlzl*/2

. - 2
= "W, 7|z| /2€n

On the other hand, using (3.10) and the property p = @ of the Gaussian,
we obtain

Vo Ha (z,~w) = Vp Ho(z. —w)

i

— e')ni;r.w Vs’ Hn(w, 7‘)

— e?nir-ue—nir-uBfln(w _ i:C) e-vrlz['/Q

xlal

o - ‘.'2
= gTiTW g mz| /2(

1/2 :
] ) Hw - i)

’ ; |exd
T - 279, 1/2 )
= MW, n|z| /2( = ) ( lz)a

— (__,I:)lnl I W e—.‘rl:lz/Zen(Z) )
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Since V,, is one-to-one, it follows that Hy = (=i)l*l g ]

As a consequence we obtain Plancherel’s theorem.

Corollary 3.4.5. If f € L*(RY) is a finite linear combination of Hermite
functions, then | fila = || fll2-

Proof. Since the collection of Hermite functions forms an orthonormal basis
for L?(R%), the L%norm of a finite linear combination f = Y, caHy is
given by ||[f]l2 = liclla. Since f = 3, ca(=i)*IH,, its norm is I flle =
[{(=)1Tea)llz = llella = [1£]l2.

This isometry extends to all of L2(R?). because the finite linear comibi-
nations of Hermite functions are dense in L?(R%). |

The attentive reader will observe that the preceding argument is not
an independent proof of Plancherel’s theorem. The argument is circular
because we have used Plancherel's theorem to show that the Bargmann
transform is an isometry. The insight from Corollary 3.4.5 is that the
unitarity of the Fourier transform and that of the Bargmann transform are
equivalent. Fach statement can be derived from the other.

The results of this section show once again how special Gaussians are
in time-frequency analysis. The STFT with respect to a Gaussian window
is, except for a weighting factor, an entire function. Counsequently, for the
investigation of V,, the entire arsenal of complex analysis is at our disposal.
This explains why, for many questions about the STFT, the results for the
case of Gaussian windows are much 1ore precise than for other windows.



