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FT'T procednres of size N, and thns requires a total of O(N?log, N)
operations. Fignre 4.3 is computed with this algoritlun,

Inverse Transform The following theorem discretizes the recon-
strnction formmla and the energy conservation of Theorem 4.1,

Theorem 4.2 If f is a signal of period N then

1t o= i2wln
f[n] v Z Sflm, ] g[n — m] exp <‘~V ) (4.28)
m=0 [=() !
and
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This theorem is proved by applying the Parseval and Plancherel
formulas of the discrete Fonrier transform, exactly as in the proof of
Theorem 4.1. The reconstrnction formula (4.28) is rewritten

1 W — i27in
fln] = ~ Z gln — m| Z Sflm, 1] exp < N‘ ) )

m=0 =0

The second sum computes for each 0 < m < N the inverse discrete
Fourier transform of S f{m. ] with respect to [. This is calenlated with
V FFT procedures, requiring a total of Q(N?log, N) operations.

A discrete windowed Fourier transform is an N? image Sf[l, m]
that is very redundant, since it is entirely specified by a signal f of size
N. The redundancy is characterized by a discrete reproducing kernel
eqnation, which is the discrete equivalent of (4.20).

4.3 Wavelet Transforms !

To analyze signal structures of very different sizes, it is necessary to
use time-frequency atoms with different time supports. The wavelet
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transforin decomposes signals over dilated and translated wavelets. A
wavelet is a function ¢ € L3(R) with a zero average:

00
/ () dt = 0. (4.30)
. oc
It is normalized |+)]] = 1, and centered in the neighborhood of t+ = 0.

A family of time-frequency atoms is obtained by scaling 4 by s and
translating it by u:

bralt) = \/L; " <t - "> |

These atoms remain normalized: |[1),4l] = 1. The wavelet transform of
f € L%3(R) at time u and scale s is

00 o
W) = = [ a0 Jee (S0 ) s

o =00

Linear Filtering The wavelet transform can be rewritten as a con-
volution product:

W f(u,5) = /m.f(f) \i[ v (’ - ) dt = fri(u)  (432)

oo

with

The Fourier transform of ,(t) is

(W) = V59 (sw). (4.33)

Since 1/3(0) = /+;° w(t) dt = 0, it appears that 1 is the transfer function
of a band-pass filter. The convolution (4.32) computes the wavelet
transform with dilated band-pass filters.

Analytic Versus Real Wavelets Like a windowed [Fonrier trans-
form, a wavelet transform can measure the time evolution of frequency
transients. This requires using a complex analytic wavelet. which can
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separate amplitude and phase components. The properties of this an-
alytic wavelet transform are described in Section 4.3.2, and its appli-
cation to the measnrement of instantancous frequencies is explained in
Section 4.4.2. Tn contrast, real wavelets are often used to detect sharp
signal transitions. Section 4.3.1 introduces clementary properties of
real wavelets, which are developed in Chapter G.

4.3.1 Real Wavelets

Suppose that 1 is a real wavelet. Since it has a zero average. the wavelet
integral

+0C —

W f () = '/m .f(t)%'d)' (' . ) i

measnures the variation of f in a neighborhood of u, whose size is pro-
portional to s. Section 6.1.3 proves that when the scale s goes to zero,
the decay of the wavelet coefficients characterizes the regularity of f
in the neighborhood of u. This has important applications for detect-
ing transients and analyzing fractals. This section concentrates on the
completeness and redundancy properties of real wavelet transforms.

Example 4.6 \Vavelets equal to the second derivative of a Gaussian
are called Mezican hats. They were first used in computer vision to
detect multiscale edges [354]). The normalized Mexican hat wavelet is

)(f)—--—2—— 2 e (22 (4.34)
? T xA/3q \o? Pl2s2 ) '

For o = 1, Figure 4.6 plots —1 and its Fourier transform

R — 5/2 21/4 2,2
Ph(w) = ___8_:1_/_5_7r_w2 exp < (72w ) . (4.35)

Fignure 4.7 shows the wavelet transform of a signal that is piecewise
regular on the left and almost everywhere singular on the right. The
maximnm scale is smaller than 1 because the support of f is normal-
ized to [0,1]. The minimum scale is limited by the sampling interval of
the discretized signal used in munerical calculations. When the scale
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decreases, the wavelet transform has a rapid decay to zero in the re-
gions where the signal is regnlar. The isolated singnlarities on the left
create cones of large amplitnde wavelet coefficients that converge to the
locations of the singnlarities. This is iirther explained in Chapter 6.
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Figure 4.6: Mexican hat wavelet (4.34) for ¢ = 1 and its Fourier trans-
form.

A real wavelet transform is complete and aintains an energy con-
servation. as long as the wavelet satisfies a weak admissibility condi-
tion, specified by the following theorem. This theorem was first proved
in 1964 by the mathematician Calderén [111], from a different point
of view. Wavelets did not appear as such, but Calderén defines a
wavelet transform as a convolution operator that decomposes the iden-
tity. Grossmann and Morlet [200] were not aware of Calderén’s work
when they proved the same formula far signal processing.

Theorem 4.3 (Calderén, Grossmann, Morlet) Let ¢ € L*(R) be
a real function such that

+00 ", 2
Cy = / %w_)l_ dw < 4o0c. (4.36)
Jo

Any f € L2(R) satisfies

1 [ [re 1 t—u ds
- 7 f(. 8) —— hiidy )
f(t) . ./0 '/m W f(u, s) 7 W ( . ) du 2 (4.37)

and

/%o |f(®)*dt = = /‘+°° /+°° |W f(u, s)|*d ds (4.38)
3 ('_Cw | . U, 8 ,usz. .
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Figure 4.7: Real wavelet transform 1V f(u, s) computed with a Mexican
hat wavelet (4.34). The vertical axis represents log, s. DBlack, grey
and white points correspond respectively to positive, zero and negative
wavelet coefficients,
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Proof 1. The prool of (4.38) is almost identical to the proof of (4.18).
Let us concentrate on the proof of (4.37). The right integral b(t) of (4.37)
can be rewritten as a sum of convolutions. Inserting W f (1, 5) = fx1h,(u)
with 1h,(t) = s~/ 24p(t/s) yiclds

1 00

C,/, JO

1 [t ds .
2 ./0 J*apg xahy(t) 2 (4.39)

52

b(t)

W (., s) x1he(2t)

The . indicates the variable over which the convolution is calculated.
We prove that b= f by showing that their Fourier transforms are equal.
The Fourier transform of b is

R TSI R ds f hoo [
) = o /0 F) VA () Vansw) B = fé‘:) /0 s L.

Since 9 is real we know that |1h(—w)|? = |[$(w)|®. The change of variable
¢ = sw thus proves that

+00 ,l‘ 2 .
[ (g)l ¢ = f(w). (4.39)

b(w) = g;f(w) /0

The theorem hypothesis

~0C |,/ 2
o I

J0

is called the wavelet admissibility condition. To guarantee that this
infegral is finite we must ensure that 1/;(0) = 0, which explains why
we imposed that wavelets must have a zero average. This condition is
nearly sufficient. If 1/(0) = 0 and ¢)(w) is continuously differentiable
then the admissibility condition is satisfied. One can verify that 1/3(w)
is continuously differentiable if ¢/ has a sufficient time decay

/ma + 18 16(0) dt < +oc.

oc
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Reproducing Kernel Like a windowed Fonrier transfori, a wavelet
transform is a rednndant representation, whose redundancy is charac-
terized by a reproducing kernel equation. Inserting the reconstrnetion
formula (4.37) into the definition of the wavelet transform yields

oo p4oo )
(‘C.];‘ '/0 / . W f (. 8) 1, 4(F) (i'lLZ—i) W, 4 (1) di.

Interchanging these integrals gives

{00

”"/'(II.(). .H'(]) /

oo

. [ = ds
W f(ug, s9) = = K (u, uq, 3, s0) W f(u. 8)du—, (4.40)
Cu. J—oa 8
with
K (g, 1y 80.8) = (WVnse Vuguso) - (4.41)

The reproducing kernel K (uy, u, 9, $) measnres the correlation of two
wavelets i, c and 1y, 4. The reader can verify that any function ®(u, s)
is the wavelet transform of some f € L2%(R) if and only if it satisfies
the reproducing kernel equation (4.40).

Scaling Function When W f(u,s) is known only for s < sg, to re-
cover f we need a complement of information corresponding to W f(u, s)
for s > s¢. This is obtained by introducing a scaling function ¢ that is
an aggregation of wavelets at scales larger than 1. The modulus of its
Fourier transform is defined by

. , —00 o ds +00 7) 9
)] = / (sw)? 2 = / @d@ (4.42)

and the complex phase ofq;)(w) can be arbitrarily chosen. One can verify
that ||¢|| = 1 and we derive from the admissibility condition (4.36) that

lim |p(w)[* = Cy. 4.43
lim |$(w)* = C, (4.43)
The scaling function can thus be interpreted as the impulse response

of a low-pass filter. Let us denote

&5

1 [t ; v
¢9(1) = \7§¢(_> and ¢.v(t) ¢s( 7L)'
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The low-frequency approximation of [ at the scale s is

1 f—
Lf(u,s) = <f(l,), ﬁ(f) <f_s_“)> = f*dy(u). (4.44)
With a minor modification of the proof of Theorem 4.3, it can be shown
that

1 [ ds 1
(1) = — W, 8) * i, (8) —
100 = g; [ WG x5

LI(.. 50) % duo(t).  (4.45)

Example 4.7 If ¢ is the second order derivative of a Ganssian whose
Fonrier transforn is given by (4.35), then the integration (4.42) yields

251/21/1
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Figure 4.8: Scaling function associated to a Mexican hat wavelet and
its Fonrier transform calculated with (4.46).

4.3.2 Analytic Wavelets

To analyze the time cvolution of frequency tones, it is necessary to use
an analytic wavelet to separate the phase and amplitude information
of signals. The properties of the resulting analytic wavelet transform
are studied.



