
TMA 4180 Optimeringsteori
Spring 2005/2010

Review Questions

This review list contains simple and somewhat more di¢ cult questions from the curriculum. The
�rst part of the list is based on a list from 2005, where the curriculum was slightly di¤erent fnrom
this year.

You should cross out all questions you know the answer to already, and work on the rest until
everything has been crossed out.

For some of the questions, the idea is just to look up the answer in the notes and trying to
understand what is going on.

NB! There will be no solutions to the questions given here.

1. Explain the following terms for a real-valued function on a domain 
 2 Rn: A local mini-
mum, a global minimum, and a strict local minimum.

2. How is a closed and a bounded set de�ned?

3. The continuous function f is de�ned on a closed and bounded set 
 2 Rn. Does the problem
minx2
 f (x) have a solution? What about maxx2
 f (x)?

4. Which of the following problems have solutions:

y = arg min
�1<x<1

x3;

y = arg min
0<x<1

(2x� 1)4;

y = arg min
x2Rn

�
x0Ax + b0x+ 

	
; A > 0;

y = argmin
x2Rn;kxk�1

x0Ax ; A arbitrary.

5. What is the di¤erence between the Taylor Formula and the Taylor Series?

6. Let g : R! R. Recall the 1-D Taylor formula

g (x) = g (0) + g0 (0)x+
1

2
g00 (x�)x

2:

What is the meaning of x�?

7. Let f : Rn ! R. How is the gradient and the Hessian of f de�ned, and how can we write
the Taylor series of f to second order?

8. Use the 1-D Taylor formula above to derive

f(x) = f(x0) +rf(x0)0(x� x0) +
1

2
(x� x0)

0r2f(x�)(x� x0):

9. How is the directional derivative, �f (x; p) de�ned?

10. Prove that
�f (x; p) = rf (x) p

if the gradient of f exists and is continuous around x.
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11. What are feasible directions from a point x 2 
?

12. Express the necessary �rst order condition for a feasible point x� in order to be a local
minimum. What is the condition when x� is an inner point in 
?

13. State the second order necessary conditions which needs to hold in an inner local minimum.

14. Which second order condition guarantee that we have a strict local minimum?

15. What is a convex set?

16. If A1, � � � ; An are convex sets, are [ni=1Ai and \ni=1Ai convex? Give examples and proofs.

17. What is a convex function? What is a strictly convex function?

18. Which of these functions are convex:

y = 2x� 5;
y = jxj � 3x;
y = x100 � exp(x=100);
y = kxk ; x 2 Rn;
y = x0Ax� 100c0x� 3; x; c 2 Rn; A � 0:

19. Prove that �f + �g is convex when f , g are convex and � and � are what?

20. Prove that if f1,� � � ; fn are convex for all x, then g (x) = max (f1 (x) ; � � � ; fn (x)) is convex.

21. Prove that if f1,� � � , fn are convex, then

C = fx; f1 (x) � c1; � � � ; fn (x) � cng

is convex.

22. Prove that the sets

fx ; Ax = bg ;
fx ; Ax � bg ;

are convex.

23. What is a di¤erentiable function.

24. De�ne the tangent plane of a di¤erentiable function.

25. Argue that the graph of a di¤erentiable convex function is above its tangent planes.

26. What is the big result for minima of convex functions de�ned on convex sets?

27. What is a line search algorithm?

28. What is a trust region method?

29. Derive the gradient, the Hessian and the solution for the quadratic model problemminx2Rn f (x),
where

f (x) = a+ b0x+
1

2
x0Ax; A > 0:

30. Derive Newton�s method.

2



31. What is a descent direction and what are the angles between descent directions and the
gradient?

32. What is the angle between the gradient and the search direction at the exact minimum of
a line search step?

33. Explain what the Strong Wolfe�s Conditions are for a one dimensional line search. Why are
these conditions important?

34. What is N&W�s de�nition of a globally convergent algorithm?

35. What can happen with globally convergent algorithms on in�nite domains?

36. What is the content of Zoutendijk�s Theorem?

37. State the A-scalar product and show that it de�nes a norm on Rn.

38. Derive the Steepest Descent algorithm for the quadratic model problem.

39. What determines the convergence rate for the Steepest Descent algorithm?

40. Explain what is meant by quadratic convergence for Newton�s method.

41. Which cases will occur in the solution of the Trust Region model problem

min
kpk��

�
a0p+

1

2
p0Bp

�
;

and how can it be solved?

42. How is � adjusted in the Trust Region method?

43. What is the Cauchy point and the Dog-Leg method in the Trust Region algorithm?

44. How is a Hilbert space de�ned?

45. Let H0 is a closed subspace of the Hilbert space H and

y = arg min
z2H0

kx� zk :

What is y called and which properties does it have?

46. Let fejgni=1 be a basis of H and H0 = span fe1; � � � ; ekg, k < n. How is y in the previous
question related to the Fourier series of x?

47. Explain the two main ideas of the Conjugate Gradient method applied to the quadratic
model problem.

48. Explain the idea of the Preconditioned Conjugate Gradient.

49. What is the Polak-Rebiere method?

50. Explain the main idea behind Quasi Newton methods?

51. What is a triplet for 1-d minimization problems?

52. What are the Golden Ratio and Parabolic Fit search for 1-d minima?

53. What is an n-dimensional simplex in the Amoeba method?

54. Explain the 4 basic operations in the Amoeba method.
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55. (research required!) Explain the additional outer contraction used in the Matlab function
fminsearch.

56. State the linear problem in Least Square Optimization and derive the Normal Equations.

57. De�ne the (reduced form) Singular Value Decomposition for a general matrix A.

58. Discuss the solutions of the normal equations in the full rank and the rank de�cient cases.

59. What is the Moore-Penrose inverse?

60. What is the simplest regularization method when the SVD is available?

61. Derive the gradient and the Hessian of the function

f (x) =
mX
i=1

hi (x)
2 ; x 2 Rn:

62. De�ne the Gauss-Newton method.

63. De�ne the Levenberg-Marquardt method.

64. Explain which cases are the most favorable for Gauss-Newton and Levenberg-Marquardt
methods.

65. What is the LICQ condition?

66. Explain the de�nition of the sets Fx and F1 (x) for an x 2 
?

67. State the KKT theorem and explain how it is applied.

68. State the two main lemmae used in the proof of the KKT theorem, and outline the arguments
then leading to the theorem.

69. Write down the KKT-equations for the problem

min
�
x21 + x

2
2 + x

2
3

	
;

1� x1 � x2 � x3 � 0;
x2 � 2x3;

x1 � 0; x2 � 0; x3 � 0:

70. State conditions on the equality and inequality constraints leading to a convex feasible
domain. Explain the KKT theorem in connection with convex problems. Can this result be
applied to the problem in the previous point?

71. State the 2nd order conditions for constrained problems.

72. State the Standard form of the LP problem.

73. What are slack and surplus variables?

74. Transform the following problem to standard form:

max (�x1 + x2) ;
x1 � 2 + x2;
6� x2 � x1
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75. State the KKT equation for the standard form. Is a solution of the KKT equation a solution
of the LP-problem?

76. What is the de�nition of dual problems?

77. Show that the dual problem to the Standard Problem is

max b0�

A0� � c;

78. What is an extreme point of a simplex, and what is the connection to a basic point for the
LP problem in standard form?

79. Explain the SIMPLEX algorithm in broad terms.

80. De�ne the Quadratic Programming Problem in the standard form.

81. Explain one of several ways to deal with a QP problem only involving equality constraints.

82. Explain in broad terms the idea with an active set method.

83. Explain the basic idea behind penalty and barrier methods. What happens with the Hessian
for the resulting unconstrained problem?

84. Formulate a logarithmic barrier algorithm for the LP-problem in standard form.

85. What does the notation C [a; b] and C1 [a; b] mean?

86. De�ne a functional and the Gâteaux derivative.

87. What is the Gâteaux derivative of a linear functional?

88. State a simple way to compute the derivative.

89. State simple su¢ cient conditions for the validity of

d

dt

Z b

a
h (x; t) dx =

Z b

a

@h (x; t)

@t
dx:

90. What is �J (y; v) for y 2 C1 [a; b] when

J (y) = sin y0 (a) + cos y (b)?

91. Let

J (u) =
1

2

Z
D

(�
@u

@x

�2
+

�
@u

@y

�2)
dxdy

for a nice function u de�ned on a nice domain in R2. Prove that

�J (u; v) =

Z
D

�
@u

@x

@v

@x
+
@u

@y

@v

@y

�
dxdy:

92. De�ne a convex and a strictly convex functional.

93. Consider a convex functional de�ned on a convex set D of functions. Prove that a function
y0 2 D where

�J (y0; v) = 0

for all feasible directions is a minimum of J on D.
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94. De�ne the standard functional.

95. In connection with the standard functional, what does it mean that the function f (x; y; y)
is partially convex, strongly convex and strictly convex?

96. How does the previous point connect to the convexity of the standard functional?

97. State the derivative of the standard functional. Carry out a partial integration and state
the Euler equation and the 3 common cases related to the boundary conditions.

98. State how one may be able to solve the constrained problem

min
y2D

J (y) ;

Gi (y) = ai; i = 1; � � � ; N

by forming the Lagrangian L and solving �L = 0:
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