THE BRACHISTOCHRONE — A PARTIAL SOLUTION

(Troutman p. 66 — 68)
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Kinetic energy =
lost potential energy:
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Path:
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X1

dx

_J.Xl \/1+y

Problem: The opt. path Is not necessarily monotone in x.
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1+y'(x)" is strongly convex

J20x >0

— T(y) is strictly convex

Euler equation: i[ f,. (X, y)] =0
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Equation is only meaningful for y'(x) >0

and then ¢>+/x
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Square equation: _ Y (x) _ X
1+ y'(x)2 c’
or N
y (X) - c2 _y

Implicit solution:

y(x):jox\/zdt

Set t= C?(1—(305 0)



By a small trick using trig. substitutions,

(c = \/Ec)

Cycloid
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There Is always a (unique) cycloid of the form
x(8)=c?(1-cosb)
y(8)=c*(0-sind)

for all (%, ¥,),%,y,>0:
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However, it is possible to write y =y(x) only for #<rz

(But that solves our problem in that case,
since then T(y) is strictly convex)




The solution is a cycloid in general!

(Proved later in Troutman)



