TMA 4180 Optimeringsteori
 THE CONJUGATE GRADIENT METHOD

H. E. Krogstad, IMF, Spring 2008

1 INTRODUCTION

This note summarizes main points in the numerical analysis of the Conjugate Gradient (CG) method. Most of the material is also found in N\&W, but the note contains the proof of Eqn. 5.36, which is the main convergence result for CG. The numerical experiments reported in the lecture are also included.

2 DERIVATION

The Conjugate Gradient method is derived for the quadratic test problem,

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \phi(x), \tag{1}
\end{equation*}
$$

where

$$
\phi(x)=\frac{1}{2} x^{\prime} A x-b^{\prime} x,
$$

and $A \in \mathbb{R}^{n \times n}$ is positive definite, $A>0$. The method was originally considered to be a direct method for linear equations, but its favorable properties as an iterative method was soon realized, and it was later generalized to more general optimization problems.
A key point in the derivation is clever use of the A-scalar product, $\langle x, y\rangle_{A}=x^{\prime} A y$, and the corresponding norm, $\|x\|=\left(x^{\prime} A x\right)^{1 / 2}$ (see Basic Tools note).
We already know that $\nabla \phi(x)^{\prime}=g=A x-b$ and $\nabla^{2} \phi=A$, so that

$$
\begin{equation*}
x^{*}=\arg \min _{x \in \mathbb{R}^{n}} \phi(x)=A^{-1} b . \tag{2}
\end{equation*}
$$

The first observation is that a set of $n A$-orthogonal vectors, $p_{0}, p_{1}, \cdots, p_{n-1}$, that is,

$$
\begin{equation*}
p_{i}^{\prime} A p_{j}=p_{i}^{\prime} A p_{i} \times \delta_{i j}, \tag{3}
\end{equation*}
$$

is a basis for \mathbb{R}^{n} (recall TMA 4110/15 or a similar course for the terminology!). This property can be stated in several equivalent ways:

1. The n vectors $\left\{p_{j}\right\}$ are linearly independent
2. $\operatorname{span}\left\{p_{0}, p_{1}, \cdots, p_{n-1}\right\}=\mathbb{R}^{n}$
3. every $x \in \mathbb{R}^{n}$ can be written uniquely as $x=\sum_{j=0}^{n-1} \beta_{j} p_{j}$

Let us for the derivation of the CG method assume that we already have a basis $\left\{p_{0}, p_{1}, \cdots, p_{n-1}\right\}$, that we start at $x_{0}=0$, and let $p_{0}=-g_{0}=b$ (the start point is easily adjusted later). The A-orthogonality enables us to write $x^{*}=\sum_{j=0}^{n-1} \alpha_{j} p_{j}$, where

$$
\begin{equation*}
\alpha_{k}=\frac{p_{k}^{\prime} A x^{*}}{p_{k}^{\prime} A p_{k}}=\frac{p_{k}^{\prime} b}{p_{k}^{\prime} A p_{k}}=-\frac{p_{k}^{\prime} g_{0}}{p_{k}^{\prime} A p_{k}} . \tag{4}
\end{equation*}
$$

It is interesting that we can compute the coefficients in the expansion for x^{*} without knowing x^{*} itself!
Below the subspaces

$$
\begin{equation*}
B_{k}=\operatorname{span}\left\{p_{0}, \cdots, p_{k-1}\right\}, k=0, \cdots, n-1, \tag{5}
\end{equation*}
$$

will play an important role. Observe that

$$
\begin{equation*}
B_{0} \subset B_{1} \subset \cdots \subset B_{n-1}=\mathbb{R}^{n} . \tag{6}
\end{equation*}
$$

It is a general property of expansions in orthogonal bases that partial sums are the best approximations in the corresponding subspaces spanned by the basis-vectors. This means that

$$
\begin{equation*}
x_{k}=\sum_{j=0}^{k-1} \alpha_{j} p_{j}=\arg \min _{y \in B_{k}}\left\|y-x^{*}\right\|_{A} . \tag{7}
\end{equation*}
$$

As long as we look around for a good approximation to x^{*} in B_{k}, x_{k} is the best choice (in the A-norm)! In the present case, x_{k} is also best in another sense, namely, it solves the optimization problem

$$
\begin{equation*}
x_{k}=\arg \min _{y \in B_{k}} \phi(y) . \tag{8}
\end{equation*}
$$

Show this yourself by deriving that $\left\|y-x^{*}\right\|_{A}^{2}=2 \phi(y)+b^{\prime} A^{-1} b$.
Equation 8 represents a constrained problem (minimum constrained to B_{k}). The feasible directions d from x_{k} will all be vectors in B_{k}, and since $\nabla \phi\left(x_{k}\right) d \geq 0$, and $-d \in B_{k}$ if d is,

$$
\begin{equation*}
\nabla \phi\left(x_{k}\right) d=g_{k}^{\prime} d=0 \text { for all } d \in B_{k} . \tag{9}
\end{equation*}
$$

This could equally well be derived from the famous Projection Theorem, since the error, $x_{k}-x^{*}$, is A-orthogonal to B_{k} :

$$
\begin{align*}
0 & =\left(x_{k}-x^{*}\right)^{\prime} A d \\
& =\left(A x_{k}-b\right)^{\prime} d \tag{10}\\
& =g_{k}^{\prime} d \text { for all } d \in B_{k} .
\end{align*}
$$

The only remaining problem is to actually find $\left\{p_{j}\right\}_{j=0}^{n-1}$, and the standard way would be to do this by a Gram-Schmidt procedure, - if we had a set of vectors to start with. If we know p_{0}, p_{1}, \cdots, p_{k-1}, it is tempting to try

$$
\begin{equation*}
p_{k}=-g_{k}+\beta_{k-1} p_{k-1}+\tilde{\beta}_{k-2} p_{k-2}+\cdots+\tilde{\beta}_{0} p_{0} \tag{11}
\end{equation*}
$$

since we already know from above that g_{k} is orthogonal to and hence linearly independent of $\left\{p_{0}, p_{1}, \cdots, p_{k-1}\right\}$.
The surprising result is now that it suffices to use

$$
\begin{equation*}
p_{k}=-g_{k}+\beta_{k-1} p_{k-1}, \tag{12}
\end{equation*}
$$

and then determine β_{k-1} so that $p_{k}^{\prime} A p_{k-1}=0$,

$$
\begin{equation*}
\beta_{k-1}=\frac{p_{k-1}^{\prime} A g_{k}}{p_{k-1}^{\prime} A p_{k-1}} \tag{13}
\end{equation*}
$$

In order to prove that this is really true, we recall that $\cdots B_{i} \subset B_{i+1} \cdots$.

The argument uses induction, and the start is easy: Starting with $p_{0}, p_{1}=-g_{1}+\beta_{0} p_{0}$ can be made A-orthogonal to p_{0} by choosing β_{0} as in Eqn. 13.
One then needs to verify that $\left\{p_{0}, p_{1}, \cdots, p_{k-1}, p_{k}\right\}$ is an A-orthogonal set if the vectors $\left\{p_{0}, p_{1}, \cdots, p_{k-1}\right\}$ are A-orthogonal. We already know that $p_{k}^{\prime} A p_{k-1}=0$, but what about p_{k} and $p_{0}, p_{1}, \cdots, p_{k-2}$? Consider p_{k} and p_{i} for $i \leq k-2$:

$$
\begin{equation*}
p_{i}^{\prime} A p_{k}=p_{i}^{\prime} A\left(-g_{k}+\beta_{k-1} p_{k-1}\right)=-p_{i}^{\prime} A g_{k}, \tag{14}
\end{equation*}
$$

since we know $p_{i}^{\prime} A p_{k-1}=0$ by the induction hypothesis. The trick is now to write

$$
\begin{equation*}
x_{i+1}=x_{i}+\alpha_{i} p_{i}, \tag{15}
\end{equation*}
$$

multiply by A and subtract b on both sides so that

$$
\begin{equation*}
g_{i+1}=g_{i}+\alpha_{i} A p_{i} . \tag{16}
\end{equation*}
$$

In general, $g_{i} \in B_{i+1} \subset B_{i+2} \subseteq B_{k}, g_{i+1} \in B_{i+2}$, and then from Eqn. 16, $A p_{i}=\left(g_{i+1}-g_{i}\right) / \alpha_{i} \in$ B_{k}. But g_{k} is $\left\|\|_{2}\right.$-orthogonal to B_{k}, so $\left(A p_{i}\right)^{\prime} g_{k}=0$ for all $i \leq k-2$!
Before stating the algorithm, let us consider the modifications when we start at an arbitrary $x_{0} \neq 0$. The series expansion for x^{*} will then be

$$
\begin{equation*}
x^{*}=x_{0}+\sum_{j=0}^{n-1} \alpha_{j} p_{j} \tag{17}
\end{equation*}
$$

and exactly as above,

$$
\begin{equation*}
\alpha_{k}=\frac{p_{k}^{\prime} A\left(x^{*}-x_{0}\right)}{p_{k}^{\prime} A p_{k}}=\frac{-p_{k}^{\prime}\left(A x_{0}-b\right)}{p_{k}^{\prime} A p_{k}}=-\frac{p_{k}^{\prime} g_{0}}{p_{k}^{\prime} A p_{k}} . \tag{18}
\end{equation*}
$$

The CG-algorithm may then be written:

$$
\begin{aligned}
& \text { Given } x=x_{0} \\
& \text { Define } p=-g=-A x+b \\
& \text { for } k=1: k_{\max } \\
& \qquad \begin{array}{l}
\alpha=-p^{\prime} g / p^{\prime} A p \\
\\
x=x+\alpha p \\
g=g+\alpha A p \\
\beta=p^{\prime} A g / p^{\prime} A p
\end{array} \\
& \qquad \begin{array}{l}
p=g+\beta p
\end{array} \\
& \text { end }
\end{aligned}
$$

The expression for β_{k} may be simplified in several ways, e.g. by utilizing that gradients are $\left\|\left\|\|_{2^{-}}\right.\right.$ orthogonal:

$$
\begin{equation*}
\beta_{k}=\frac{p_{k}^{\prime} A g_{k+1}}{p_{k}^{\prime} A p_{k}}=\frac{g_{k+1}^{\prime}\left(g_{k+1}-g_{k}\right) / \alpha_{k}}{\left(-g_{k}+\beta_{k-1} p_{k-1}\right)\left(g_{k+1}-g_{k}\right) / \alpha_{k}}=\frac{g_{k+1}^{\prime} g_{k+1}}{g_{k}^{\prime} g_{k}} . \tag{19}
\end{equation*}
$$

3 ERROR ANALYSIS

We know that $\left\{x_{k}\right\}$ is a sequence of best approximations, but how good is it really? It turns out that there exists a fairly complete theory for the error analysis which involves some interesting mathematics.
Let us start at a general x_{0} with the first search direction $p_{0}=-g_{0}=-\left(A x_{0}-b\right)$. Then, from Eqns. 16 and 12,

$$
\begin{align*}
p_{1} & =-g_{1}+\beta_{k-1} p_{0} \\
& =-\left(g_{0}-\alpha_{0} A g_{0}\right)-\beta_{k-1} g_{0} \in \operatorname{span}\left\{g_{0}, A g_{0}\right\} \tag{20}
\end{align*}
$$

Continuing in the same way, it is easy to prove that

$$
\begin{equation*}
p_{k} \in \operatorname{span}\left\{g_{0}, A g_{0}, A^{2} g_{0}, \cdots, A^{k} g_{0}\right\} . \tag{21}
\end{equation*}
$$

Hence, B_{k} could as well be defined

$$
\begin{equation*}
B_{k}=\operatorname{span}\left\{g_{0}, A g_{0}, A^{2} g_{0}, \cdots, A^{k-1} g_{0}\right\}, \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k}-x_{0} \in \operatorname{span}\left\{g_{0}, A g_{0}, A^{2} g_{0}, \cdots, A^{k-1} g_{0}\right\} . \tag{23}
\end{equation*}
$$

The sequence

$$
\begin{equation*}
g_{0}, A g_{0}, A^{2} g_{0}, \cdots \tag{24}
\end{equation*}
$$

is called a Krylov Sequence, and $\left\{B_{k}\right\}$ the Krylov Subspaces, after Alexei Nikolaevich Krylov (18631945), famous Russian naval architect and applied mathematician.

The group of algorithms based on Krylov sequences and subspaces (of which CG is the main one) belongs to the 2000th Century Top Ten Algorithms.
Because of (23), we can write

$$
\begin{equation*}
x_{k}-x_{0}=\sum_{j=0}^{k-1} \gamma_{j}\left(A^{j} g_{0}\right)=\left(\sum_{j=0}^{k-1} \gamma_{j} A^{j}\right) g_{0}=P_{k}(A) g_{0} \tag{25}
\end{equation*}
$$

where $P_{k}(A)$ is a matrix polynomial of degree $k-1$. Furthermore,

$$
\begin{align*}
x_{k}-x^{*} & =P(A) g_{0}+x_{0}-x^{*} \\
& =P(A)\left(A x_{0}-A x^{*}\right)+x_{0}-x^{*} \tag{26}\\
& =(P(A) A+I)\left(x_{0}-x^{*}\right)=Q_{k}(A)\left(x_{0}-x^{*}\right),
\end{align*}
$$

where Q_{k} is a matrix polynomial of degree k with $Q_{k}(0)=1$.
Like we did for the analysis the Steepest Descent method, we observe that A has eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and a corresponding set of orthogonal, normalized, eigenvectors, $e_{1}, e_{2}, \cdots, e_{n}$. Recall that for $y=\sum_{j=1}^{n} t_{j} e_{j}$,

$$
\begin{equation*}
\|y\|_{A}^{2}=y^{\prime} A y=y^{\prime}\left(\sum_{j=1}^{n} \lambda_{j} t_{j} e_{j}\right)=\sum_{j=1}^{n} \lambda_{j} t_{j}^{2} . \tag{27}
\end{equation*}
$$

Similarly, noting that also $Q(A) e_{j}=Q\left(\lambda_{j}\right) e_{j}$,

$$
\begin{equation*}
\|Q(A) y\|_{A}^{2}=y^{\prime} Q(A) A Q(A) y=\sum_{j=1}^{n} Q^{2}\left(\lambda_{j}\right) \lambda_{j} t_{j}^{2} . \tag{28}
\end{equation*}
$$

If we apply Eqn. 28 to Eqn. 26 with $\left(x_{0}-x^{*}\right)=\sum_{j=1}^{n} \xi_{j} e_{j}$, we obtain

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A}^{2}=\sum_{j=1}^{n} Q_{k}^{2}\left(\lambda_{j}\right) \lambda_{j} \xi_{j}^{2} . \tag{29}
\end{equation*}
$$

This is an exact expression, and since the norm is as small as possible, it will be impossible to decrease it by choosing a different polynomial. Thus, the polynomial Q_{k} is the optimal solution to the problem

$$
\begin{equation*}
Q_{k}=\arg \min _{\substack{\operatorname{deg}(Q)=k, Q(0)=1}}\left(\sum_{j=1}^{n} Q^{2}\left(\lambda_{j}\right) \lambda_{j} \xi_{j}^{2}\right) \tag{30}
\end{equation*}
$$

The expression is not particularly tractable since the optimal Q_{k} will vary for each x^{*}, but we can also write

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A}^{2} \leq \max _{j} Q_{k}^{2}\left(\lambda_{j}\right) \sum_{j=1}^{n} \lambda_{j} \xi_{j}^{2}=\max _{j} Q_{k}^{2}\left(\lambda_{j}\right)\left\|x_{0}-x^{*}\right\|_{A}^{2}, \tag{31}
\end{equation*}
$$

which shows that the relative error of x_{k} is bound by $\max _{j}\left|Q_{k}\left(\lambda_{j}\right)\right|$,

$$
\begin{equation*}
\frac{\left\|x_{k}-x^{*}\right\|_{A}}{\left\|x_{0}-x^{*}\right\|_{A}} \leq \max _{j}\left|Q_{k}\left(\lambda_{j}\right)\right| . \tag{32}
\end{equation*}
$$

The quite general error estimate in Eqn. 32 has some surprising implications. We are free to put in any polynomial we like as long as it has degree k and $Q(0)=1$. Thus, if A happens to have only k different eigenvalues, there exists a k-th order polynomial having those k eigenvalues as zeros and, by a suitable scaling, we can also obtain $Q(0)=1$. Then $\left\|x_{k}-x^{*}\right\|_{A}=0$, and the method converges to x^{*} in k iterations!
The following result is somewhat deeper. It considers the case when we have an idea about the extreme eigenvalues of A, λ_{1} and λ_{n}, but not the eigenvalues in between. It is then reasonable to ask how small the right hand side of Eqn. 32 could be, since we clearly have

$$
\begin{equation*}
\frac{\left\|x_{k}-x^{*}\right\|_{A}}{\left\|x_{0}-x^{*}\right\|_{A}} \leq \min _{\substack{\text { of order } k \\ Q(0)=1}}\left(\max _{\lambda_{1} \leq \lambda \leq \lambda_{n}}|Q(\lambda)|\right) . \tag{33}
\end{equation*}
$$

This turns out to be a classic so-called min-max problem in the approximation of functions, and the solution is given by

$$
\begin{equation*}
Q^{*}(\lambda)=\frac{T_{k}\left(\frac{2 \lambda-\lambda_{1}-\lambda_{n}}{\lambda_{n}-\lambda_{1}}\right)}{T_{k}\left(\frac{\lambda_{1}+\lambda_{n}}{\lambda_{1}-\lambda_{n}}\right)}, \tag{34}
\end{equation*}
$$

where T_{k} is the Chebyshev polynomial of degree k. Look up http://mathworld.wolfram.com for plots and properties of the Chebyshev polynomials (This is the spelling accepted by Mathworld. When I was a student, we were told that there are 52 different spellings of the name Chebyshev, but Mathworld cites 40).

Since $\max _{-1 \leq x \leq 1}\left|T_{k}(x)\right|=1$, inequality 32 now leads to

$$
\begin{equation*}
\frac{\left\|x_{k}-x^{*}\right\|_{A}}{\left\|x_{0}-x^{*}\right\|_{A}} \leq \frac{1}{\left|T_{k}\left(\frac{\lambda_{1}+\lambda_{n}}{\lambda_{1}-\lambda_{n}}\right)\right|} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left\|x_{k}-x^{*}\right\|_{A}}{\left\|x_{0}-x^{*}\right\|_{A}} \leq \frac{1}{\left|T_{k}\left(\frac{\kappa+1}{\kappa-1}\right)\right|} \tag{36}
\end{equation*}
$$

where $\kappa=\lambda_{n} / \lambda_{1}$ is the condition number of A. The Chebyshev polynomials satisfy a lot of relations, and one definition (not included in the Mathworld Encyclopedia) is simply

$$
\begin{equation*}
T_{k}(x)=\frac{1}{2}\left(\left(x+\sqrt{x^{2}-1}\right)^{k}+\left(x-\sqrt{x^{2}-1}\right)^{k}\right) . \tag{37}
\end{equation*}
$$

With $x=(\kappa+1) /(\kappa-1)$, we obtain

$$
\begin{equation*}
x+\sqrt{x^{2}-1}=\frac{(\sqrt{\kappa}+1)^{2}}{\kappa-1}, x-\sqrt{x^{2}-1}=\frac{(\sqrt{\kappa}-1)^{2}}{\kappa-1} \tag{38}
\end{equation*}
$$

and

$$
\begin{align*}
T_{k}\left(\frac{\kappa+1}{\kappa-1}\right) & =\frac{1}{2}\left(\left(\frac{(\sqrt{\kappa}+1)^{2}}{\kappa-1}\right)^{k}+\left(\frac{(\sqrt{\kappa}-1)^{2}}{\kappa-1}\right)^{k}\right) \\
& =\frac{1}{2} \frac{(\sqrt{\kappa}+1)^{2 k}+(\sqrt{\kappa}-1)^{2 k}}{(\sqrt{\kappa}-1)^{k}(\sqrt{\kappa}+1)^{k}} \tag{39}\\
& =\frac{1}{2}\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{k}+\frac{1}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}>\frac{1}{2}\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{k}
\end{align*}
$$

In addition,

$$
\begin{equation*}
\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} \underset{k \rightarrow \infty}{\longrightarrow} 0 \tag{40}
\end{equation*}
$$

when $\kappa>1$. This leads finally to Eqn. 5.36 in N\&W, 2nd Ed. (Note: Eqn. 5.35 in N\&W, 1st Ed. states the result with the wrong power, the wrong constant, and the wrong definition of $\kappa!$):

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x_{0}-x^{*}\right\|_{A} \tag{41}
\end{equation*}
$$

Figure 1 shows the polynomials Q_{k} for some k-s when $\lambda_{1}=0.3$ and $\lambda_{n}=2$. The maximum deviation for Q_{10} in the interval [$0.3,2$] is only 5.6×10^{-4}, - not bad!
Thus, if we have a system of equations and know that the coefficient matrix has eigenvalues in the interval [0.3 2], after 10 CG-iterations,

$$
\begin{equation*}
\left\|x_{10}-x^{*}\right\|_{A} \leq 5.6 \times 10^{-4}\left\|x_{0}-x^{*}\right\|_{A} \tag{42}
\end{equation*}
$$

regardless the size of the system!
Penalty and barrier methods (N\&W, Chapter 17) always lead to Hessians which have a few very large eigenvalues (actually tending to ∞ as the iteration proceeds), whereas the rest are clustered

Figure 1: The optimal Chebyshev polynomials for the interval $[0.3,2]$ when $k=2,5$ and 10.
in a fixed range. Theorem 5.5, p. 115, in N\&W has some quite important implications for this case:

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\|_{A} \leq\left(\frac{\lambda_{n-k}-\lambda_{1}}{\lambda_{n-k}+\lambda_{1}}\right)\left\|x_{0}-x^{*}\right\|_{A} . \tag{43}
\end{equation*}
$$

The bound is independent of the size of $\lambda_{n-k+1}, \cdots, \lambda_{n}$. It is easy to derive the bound from 32 by constructing a $(k+1)$-th order polynomial with zeros at $\left(\lambda_{1}+\lambda_{n-k}\right) / 2, \lambda_{n-k+1}, \cdots, \lambda_{n}$, when $\lambda_{n-k+1}, \cdots, \lambda_{n}$ are unique (try it!). We recognize (43) as the Steepest Descent error bound for a matrix with extreme eigenvalues λ_{1} and λ_{n-k}, and this is a key observation: By restarting the $C G$ method every $k+1$ iterations we obtain a convergence rate similar to the SD method, but with a greatly reduced condition number (counting k CG steps as one iteration).
The convergence behavior with several clustered groups of eigenvalues is illustrated on p. 116-117 in $\mathrm{N} \& \mathrm{~W}$.

Another good reference to the Conjugate Gradient is the book of G. H. Golub and C. E. van Loan: Matrix Computations, Johns Hopkins University Press (An excellent general reference book in numerical linear algebra!).

4 SOME NUMERICAL EXPERIMENTS

It is easy to experiment with the CG-method using Matlab. In the following code we first generate a positive definite matrix $R^{\prime} R$, and then the matrix $A=\left(R^{\prime} R\right)^{n p o t}$. The power npot steers the eigenvalue distribution and hence the condition number.

```
ndim = 100;
R = randn(ndim);
for npot = .1:.4:2
    A = (R'*R)^npot;
    lamb = eig(A); kappa= max(lamb)/min(lamb);
    xsol = rand(ndim,1); b = A*xsol;
    Norm2 = sqrt(xsol'*xsol); NormA = sqrt(xsol'*A*xsol);
```


Figure 2: Well-conditioned matrix. Fast convergence.

```
    x = zeros(size(b)); g = Ax-b ; p = -g;
    for loop = 1:ndim
    Ap = A*p; % Only one matrix-vector product!
    alfa = -(p'*g)./(p'*Ap);
    x = x + alfa*p;
    g = g + alfa*Ap; % g = A*x-b;
    beta = (g'*Ap)./ (p'*Ap);
    p = -g + beta*p;
    err2(loop) = sqrt((x-xsol)'*(x-xsol))/Norm2;
    errA(loop) = sqrt((x-xsol)'*A*(x-xsol))/NormA;
end;
subplot(1,2,1); plot(lamb,zeros(size(lamb)),'o');
Tittel = ['Eigenvalues, ndim=' num2str(ndim)];
title(Tittel);
subplot(1,2,2); semilogy(1:ndim, err2,1:ndim,errA);
legend( '2-norm' , 'A-norm' );
xlabel('Iteration number'); ylabel('Error')
Tittel = ['npot= ' num2str(npot) ' \kappa=',num2str(kappa)];
title(Tittel);
pause
end
```


4.1 Exercise

(a) Implement and plot the error bound in Eqn. 41 in the Matlab code. How does this compare with the actual decrease of the error? (N\&W say "This bound often gives a large overestimate").
(b) Modify the matrix A (say, $A \in \mathbb{R}^{100 \times 100}$) so that it has m (say, $m=5-10$) large eigenvalues by adding a rank- m matrix $L L^{\prime}, A=\left(R^{\prime} R\right)^{n p o t}+\mu L L^{\prime}, \mu \gg 1$. Here L is $n \times m$ and consists of m random column vectors. Test the performance of the CG-method.

Figure 3: Medium conditioned matrix.

Figure 4: Ill-conditioned matrix. The convergence is very slow, and rounding errors distroy the accuracy severely.

