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1 INTRODUCTION

The number of hits on Google on the term inverse problems has now exceeded 1.8 million. Yet,
most of you have hardly met the term in any of the courses you have been through. The �eld
of inverse problems is de�nitely a branch of applied mathematics, but deals with situations one
tend to avoid in the traditional courses in mathematics. This includes less pleasant situations
such as equations with no or in�nitely many solutions, missing conditions in a problem, linear
equations where the matrix is non-singular in theory, but numerically singular where even
multi-precision arithmetic is of no help. Although Wikipedia gives a reasonable de�nition of
the �eld, the Wolfram MathWorld discussion is rather narrow.

The TV game Jeopardy is an example of an everyday inverse problem. If you are given the
answer �It was in 1905�, your question will depend both on the circumstances and who you
are:

� When did Einstein publish his Theory of Relativity?

� When did Robert Koch get the Nobel Prize in Medicine

� When was my grandmother born?

� When did Norway and Sweden split up from the union?

Readers should have no problems with adding other �correct�questions. Thus, the information
we are given is incomplete and non-conclusive. Di¤erent input leads to the same result and the
�most probable�input depends on the occasion. All this is typical for inverse problems.

The origin of the term inverse problem is simple and mirrors what is called the forward (or
direct) problem. In simple terms, the forward problem is the situation �given the question, �nd
the answer�, whereas the inverse problem is �given the answer, �nd the question�.

A better way to express this would be to say that solving an inverse problem is to determine
a cause from its e¤ect. In some cases, there is no hope of ever being able to solve the forward
problem in full generality.

Applications of inverse problem techniques abound in medical imaging, seismology, geosciences,
and many other areas of sciences and engineering. It is probably fair to say that the majority
of real world problems are inverse problems.

The French mathematician Jacques Hadamard introduced the term well-posed for a mathemat-
ical problem where

� a solution always exists
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� the solution is unique

� a small change in the initial conditions leads to a small change in the solution

The opposite of a well-posed problem is an ill-posed problem:

� a solution may not exist

� there may be more than one solution

� a small change in the initial conditions leads to a big change in the solution

Inverse problems tend to be ill-posed.

With 1.8 million Internet hits, the need for another note about inverse problems is not that
urgent. However, the note will be tied up with topics we already have been touching in the op-
timization course. On the other hand, the topics are �avoured by this author�s own experience,
and open material from the Internet will be cited freely (but with references where available).

The note is based on a general presentation that has been given to various groups over the
years, but the �eld is too extensive to be covered in a short talk, and there are major parts of
inverse problem theory that are not covered at all here.

2 FAMOUS INVERSE PROBLEMS

Before we dig into the theory in more details, let us brie�y discuss some very famous inverse
problems.

Can you hear the shape of a drum? This question was �rst posed by the Hungarian
mathematician Mark Kac in 1966. It is a popular phrasing of the mathematical problem of
whether the spectrum of the Laplace operator of a 2d domain (the drumhead!) is su¢ cient
for determining its shape. The spectrum is here essentially the eigenfrequencies of the drum
head relative to the fundamental frequency. The question raised a lot of interest and was not
resolved before 1992, and then in the negative: There are indeed non-isomorphic plane domains
with the same eigenfrequencies. One example of iso-spectral domains is shown in Fig. 1, and
there are many other examples.

It is interesting that even if you can�t here the shape of the drum, it is claimed that you can
hear the number of holes and the length of the perimeter. The problem is thoroughly discussed
on the Internet, see e.g. Wikipedia and American Mathematical Society�s Web pages.

Computer tomography. The material in the human body has variable penetration to X-
rays. By the exposing a cross section of the body to X-rays and measuring as illustrated on
Fig. 2, one obtains measurements of the decay along straight lines through the body at varying
positions and varying angles.
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Figure 1: Simple examples of drum heads having identical eigenfrequencies (from Wikipedia article).

Figure 2: Typical arrangement of body, X-ray source and detectors for computer tomography (Figure
copied from a presentation by Dr. G. Lauritsch, Univ. of Heidelberg).
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Figure 3: Scanning along a line l de�ned by � and �.

Mathematically, the set up is as follows: We measure the body in a plane, x 2 R2, with a
variable absorption � per length unit, that is, � = � (x) ; x 2 R2. The decay along a particular
line may thus be expressed as

Iline = I0 exp

�
�
Z
line
� (x (l)) dl

�
: (1)

The line is parametrized in terms of its distance � from the origin and the angle � de�ning the
orientation of the line, as shown in Fig. 3. The integral in Eqn. 1 may then be written

R� (�; �) = �̂ (�; �) =
Z 1

�1
� (� cos � � t sin �; � sin � + t cos �) dt; (2)

where the R stands for the Radon transform, and

t! f� cos � � t sin �; � sin � + t cos �g ; (3)

is a parametrization of the line. The problem of reconstructing a 2-dimensional function from
integrals along line averaged was �rst considered by Johann Radon around 1917, and computer
tomography thus involves an inversion of the Radon transform,

� (x) = R�1 (�̂ (�; �)) : (4)

Contrary to the Fourier transform, where the inverse transform is very similar to the forward
transform, the inverse Radon transform is considerably more tricky, and the inversion formula
exists in many di¤erent forms, each with their own merits (See Wikipedia article).

If the object happens to be radially symmetric and the scanning lines are parallel (which is
su¢ cient for a radially symmetric body), the inversion reduces to the solution of what is called
Abel�s Integral Equation,

� (r) = 2

Z 1

r

dR� (�; 0)
d�

d�p
�2 � r2

: (5)
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Figure 4: Inverse scattering: The (unknown) object is illuminated by incident waves, and the properties
of the object are derived from the scattered wave �eld.

Actually, the Radon transform and its inversion were re-discovered in the sixties by Allen M.
Cormack and Godfrey N Houns�eld, who received the Nobel Prize in medicine for this work in
1979 (not without some controversy). F. Natterer�s book about CT has become a classic.

Inverse scattering. Inverse scattering is a huge and quite inhomogeneous �eld. The basic
principle consists of a transmitter, emitting some kind of waves, mostly electromagnetic or
acoustic, into a medium that scatters the waves. In general, some of the wave is scattered,
and some refracted through the medium due to a varying wave velocity. The scattered wave
is recorded by one or a set of receivers, a receiver array. The situation is illustrated in Fig. 4.
Depending on the problem, the angle of the incident wave may be varied, and the scattered
waves recorded at many di¤erent locations.

A typical situation is often that an incident plane wave hits a small object. The scattered wave
will, at large distances from the object, be about spherical, and reconstructing the shape (or
the material properties) of the object is then based on the asymptotic properties of the so-called
far �eld solution.

One of the most important and mathematically developed inverse scattering topic is seismic
processing. Here acoustic waves are transmitted (typically a short wave pulse from some kind
of explosive device) into the ground and the scattered acoustic waves are recorded by receivers
located at various places on the surface. The scattering occurs mainly from discontinuities
in the material properties. However, due to varying wave velocity in various rock types, the
received data are severely distorted and require extensive computer processing in order to be
usable. Fig. 5 shows an illustration (See Petty for a full tutorial in the reference list).

Today, seismic processing is used to map the whole world. In addition, acoustic arrays are
capable to spot small events in the earth�s mantle and discriminate between earthquakes and
a nuclear explosions.

Based on the seismic recordings, and only hours after the tragic Sumatran tsunami on December
26, 2004, California Institute of Technology was able to provide the world with estimates of the
sea �oor motion at the continental rift causing the tsunami, see Fig. 6.
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Figure 5: Simulated example demonstrating seismic inversion. Top: Model of the ground; lower left:
raw scattered signals; lower right: processed data (Illustration copied from tutorial material prepared
by Dr. R. Petty, see references).

Figure 6: Sea bottom motion causing the Sumatrian tsunami (Graphs obtained from Prof. Bjørn
Gjevik, UiO. Originally published by Caltech).
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Figure 7: Old example of imagery from the Hubble Space Telescope before adding the correction lens.
A: Original HST photo. B: Enlarged section. C: Ground telescope image. D: Digitally enhanced
image ( c
ESA).

Image restoration, With the advent of strong computers, computer image enhancement and
restoration has become feasible for everyone. Soon after the Hubble Space Telescope (HST) was
put into operation, it was discovered that the telescope mirror was seriously malfunctioning.
Images were blurred, and, even if they still were better than those obtained from ground based
telescopes, the quality was far below expectations. Since the telescope was already in space,
there was no immediate way of improving the situation, and this triggered an intense research
in image enhancement techniques. Fig. 7 shows the state of the art in 1990. See the ESA
article in the reference list for further information about this �gure.

The most popular model describing blurring of images is to model the process by a spatially
invariant Point Spread Function (PSF), fPS, acting on the ideal image by convolution, that is,
a weighted moving average. If we neglect the image boundaries, this may be written

BI (x) = fPS � I (x) =
Z
R2
fPS (x� y) I (y) dy; (6)

where I is the ideal and BI the blurred image. Contrary to what one would assume, the Fourier
transform,

Fh (k) =
Z
R2
e�ikxh (x) dx; (7)
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Figure 8: In system engineering, a linear equation is vizualized in terms of input-�lter-output.

and the well-known identity

F (BI) (k) = F (fPS) (k)�F (I) (k) ; (8)

is seldom of much help. First of all, F (BI) (k) =F (fPS) (k) breaks down where the Fourier
transform of fPS has zeros, an even if that should not be the case, regions where F (fPS) is small
will tend to magnify random errors in F (BI). The term Point Spread Function is reasonable:
An image consisting of a single point represented by a �-function at x0, �x0, will be blurred into

�x0 � fPS (x) = fPS (x� x0) : (9)

In astronomy, a remote star may be used as an excellent �-function.

3 LINEAR INVERSE PROBLEMS

Before we start, one should note that the form of the answers given below is not necessary the
expressions one would use in practice. In particular, the Singular Value Decomposition (SVD)
is a nice mathematical tool, but not always feasible for very large problems.

3.1 Noise-free problems

The linear, noise-free inverse problem is nothing but the familiar linear equation. Systems
engineering considers a linear equation Ax = b as a linear �lter, where x 2 Rn is the input and
b 2 Rm the output, or the observations, see Fig. 8. The matrix A is a representation of the
�lter, and not so seldom, the �lter is only partially known and itself part of the problem.

As long as we are able to test the �lter by entering suitable input signals, it is possible to �nd
A by entering any set of n linearly independent input vectors, e.g. the n standard basis vectors.

The trivial case is of course when we know A and b and may just solve the equation, e.g. by
standard Gaussian elimination. This leads into the following (typical) cases:

� m < n : There are many di¤erent solutions �tting the data

� m = n : There is one unique solution

� m > n : No solution ful�ls the system exactly

Inverse problems are typically under-determined, m < n, and that is what we consider below,
apart from some cases where m = n:
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As discussed in the Least Square-optimization note, the easiest way to analyze what happens is
to apply the Singular Value Decomposition of A. We recall that the (full) SVD of an arbitrary
m� n matrix A is

A = U�V 0; (10)

where U = [u1; u2; :::; um] and V = [v1; v2; :::; vn] have orthogonal columns of norm 1; and the
m � n matrix � contains the singular values f�ig along the �rst diagonal. Singular values
are non-negative, with r = rank (A) of them being strictly larger than 0. We assume that the
singular values are ordered as

�1 � �2 � � � � � �r > 0: (11)

Recall that the �rst r columns of U are a basis for R (A) (the range of A) and the last n � r
columns of V are a basis for N (A) (the null-space of A), and the SVD-representation can be
reduced to

A =
rX
i=1

�iuiv
0
i:

The Moore-Penrose generalized inverse of A is the matrix

A+ =
rX
i=1

1

�i
viu

0
i: (12)

In terms of the singular value decomposition, the full solution of the Least Square problem

x� = arg min
z2Rn

kb� Azk2 (13)

is

x� =
rX
i=1

u
0
ib

�i
vi +

nX
i=r+1

�ivi =
rX
i=1

u
0
ib

�i
vi + x

? (14)

where x? is an arbitrary vector in N (A).

Many inverse problems deal with huge matrices. E.g., in image restoration, the number of
unknowns is equal to the number of pixels, and the matrix of the Point Spread Function (in
general varying over the image) will be of dimension equal to the number of pixels squared. As
we mentioned when discussing Least Square problems, determining the rank of such a matrix is
far from trivial. The common situation is that the singular values decrease gradually to 0, and
it is impossible to say where to stop and say this is the rank of A. The nice thing about Eqn.
14 is that we can add one term at a time and stop when the solution starts to get unstable.
Small singular values magnify random errors in b, U or V , and destabilize the solution. This is
an therefore a typical ill-conditioned problem, and a characteristic feature of inverse problems.

A linear equation may also be considered as the �nite dimensional analogue of an important
class of equations in applied mathematics, namely the Fredholm integral equations. The model
for the image blur in Eqn. 6 is one example of a Fredholm equation. More generally, we may
write

y (t) =

Z
� (t; s)x (s) ds; (15)
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where t and s belong to (possibly di¤erent) bounded or unbounded sets of real numbers. The �-
function is called the kernel of the equation. Typically, the functions x and y will be elements
in Hilbert spaces, H1 and H2, respectively, and the equation then de�nes a linear operator,
K : H1 ! H2, y = Kx. For nice and smooth kernels, the operator K will be compact. This
means that the map of a bounded set by K will be pre-compact (the closure is compact).
Compact operators have a generalized SVD f�k; vk; ukg1k=1, so that we may write

Kx =

1X
k=1

�k hx; vkiuk: (16)

Moreover, to each distinct singular value �k di¤erent from 0, there are only �nitely many vk-s
and uk-s. If only �nitely many singular values are di¤erent from 0, we say that the operator is
degenerate. Otherwise, if we assume that same ordering as before, i.e. �1 � �2 � � � � , we have

lim
k!1

�k = 0;

and this is the only accumulation point.

All this makes the Fredholm integral equations with nice kernels a natural extension of the
�nite dimensional theory. E.g., the generalized inverse is again of the form

K+y =
1X
k=1

hy; uki
�k

vk: (17)

Unless K happens to be degenerate, solving a Fredholm integral equation will always be ill-
conditioned. Engl et al. give an extensive discussion of this and more general operators between
Hilbert spaces.

Example: The Hilbert matrix system. The so-called Hilbert matrix, H, is the Gram-
Schmidt matrix for the linearly independent functions ftng1n=0 on the interval [0; 1]:

Hn = fhijgni;j=1 =

26664
1 1

2
1
3
� � � 1

n
1
2

1
3

1
n+1

...
...

1
n

1
n+1

� � � 1
2n�1

37775 ; hij =
Z 1

0

ti�1tj�1dt: (18)

The matrix is clearly non-singular, but very ill-conditioned: For n = 20, the condition number
is 1:9� 1019, and the singular values and the solution, when using Matlab to solve H20x = b, is
shown in Fig. 9. Matlab has a carefully coded numerics and displays a strong warning against
using the computed solution because of the large condition number. Nevertheless, the solution
using only 10 terms in the SVD-expansion is very reasonable. The direct solution in this case
is useless, and in fact, the actual outcome varies from computer to computer with di¤erent real
number representations.

When doing a sequential SVD solution by introducing one term at a time,

x(k) =

kX
i=1

u
0
ib

�i
vi; k = 1; � � � ; n; (19)
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Figure 9: Behaviour of the Hilbert matrix system when n = 20. The left plot shows the singular
values, which reach the machine accuracy around singular value no. 15. The middle plot shows the
exact solution (red) and the solution computed by Matlab (blue). Note the scale on the ordinate axis.
Finally, the exact solution (a simple sine-shaped function) and the SVD-solution using only 10 terms
is shown to the right.
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Figure 10: Norms of residuals and solutions for the sequential SVD solution of the Hilbert system for
n = 40.

it is important to be aware that a small residual is not a useful criterion, as shown in Fig. 10
for the solution of H40x = b. Even if the residual is small (equal to the machine accuracy), for
all k-s larger than about 13, the solution runs terribly o¤ as k increases.

It is mandatory to get control over this instability, and it is now time for introducing the most
important and new concept for inverse problems, namely regularization.

3.1.1 Regularization based on the SVD

Regularization means to make the solution more regular, which often is the same as more
reasonable. There are di¤erent ways of applying regularization depending on the problem. To
truncate the SVD at a suitable point, as we saw above, is a very straightforward way of doing
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Figure 11: Optimally truncated SVD solution found by means of the Picard Plot (left). Exact (red)
and numerical (blue) solution to the right.
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Figure 12: The cosine-bell taper. The tapering zone (described by an adapted cosine function) extends
in this case from 0.7 to 1.3.

a regularization. Since the solution is expressed in terms of an orthogonal series,

x� =
nX
k=1

�kvk; (20)

where kvkk = 1, and �k = u
0
ib=�i, it is reasonable to display the absolute value of the Fourier

coe¢ cients, j�kj, and stop when these are at their smallest. Such a plot is called a Picard plot,
and an example for the Hilbert matrix problem treated above is shown in Fig. 11.

Experience from Fourier theory has showed that cutting the series abruptly is not always the
best. The sharp cut-o¤generates so-called Gibb�s oscillations near discontinuities of the solution
(look this up in the literature if it is not familiar). The cure is to introduce a tapering function,
which is a function of k starting at the value 1 for k = 1 and then dropping gently to 0 where
we want to have the truncation. A typical taper, the so-called cosine bell, T (k=k0), shown in
Fig. 12.

The truncated solutions may now be written

x(k) =
nX
i=1

T

�
i

k

�
u
0
ib

�i
vi: (21)

There is an extensive theory about the performance of various tapers (also called windows) in
signal processing, e.g. how to choose the width of the tapering zone.
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It is sometimes more convenient to express the taper as a function of �, tending to 1 when �
gets large and to 0 when � tens to 0 (See the taper derived for the Tikhonov regularization
below).

3.1.2 Tikhonov Regularization

There are many other ways of introducing regularization into an inverse problem. A rather old
idea is to extend the minimization in Eqn. 13 by some penalty term which "punishes" bad
behaviour.

Consider again an under-determined linear problem where A 2 Rm�n, m < n, and assume that
we know that the solution should not be that di¤erent from x0. The vector x0 is sometimes
called our a priori belief about the outcome. It would then be an idea to modify Eqn. 13 as:

x� = argmin
x

�
kAx� bk2 + � kx� x0k2

	
; (22)

where the positive constant � determines how much we believe in x0. Note that the two norms
are generally taken in di¤erent spaces, so that � also has to take care of physical dimensions.
This approach is called Tikhonov regularization and appears to be introduced by Andrey Niko-
layevich Tikhonov already in the 1940s (In mathematics, Tikhonov is spelled Tychono¤ and
famous for his theorem about the product of compact topological spaces).

Problem: Show that the solution of the problem in Eqn. 22 may be written in the alternative
forms

x� = (A0A+ �I)
�1
(A0b+ �x0)

= x0 + (A
0A+ �I)

�1
(A0b� A0Ax0)

= x0 +
mX
k=1

�k
�2k + �

u0k (b� Ax0) vk (23)

= x0 +
rX
k=1

�2k
�2k + �

1

�k
u0k (b� Ax0) vk

Observe that Tikhonov regularization introduces the taper

T (�) =
�2

�2 + �
; (24)

which dampens singular values less than about O
�
�1=2

�
. The function is plotted in Fig. 13.

This regularization has some less convenient properties. If we know that x has a strong peak
and our a priori belief is slightly wrong about its position, this will show up in the solution as
a spurious peak spoiling the quality of the solution. Tikhonov regularization is sometimes used
with x0 = c, thus only punishing deviations from c.

3.1.3 Smoothing Operators

Regularization is often about punishing irregularities in the solution, and a popular operator
for this purpose is the discrete Laplace operator (

Pn
i=1

@2

@x2i
). For a one-dimensional, discrete
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Figure 13: The taper T (�) for Tikhonov Regularization.

problem, the operator will be the 2nd di¤erence, D2x, de�ned from Rn to Rn�2 as�
D2x

�
k�1 = �xk�1 + 2xk � xk+1; k = 2; � � � ; n� 1: (25)

For higher-dimensional data, the operator is de�ned accordingly.

Let us denote the smoothing operator by L. The regularized problem takes the form

x� = argmin
x

�
kAx� bk2 + � kLxk2

	
; (26)

with the obvious solution
x� = (A0A+ �L0L)

�1
A0b: (27)

Example: The Hodrick-Prescott Filter. We consider yearly mean temperatures in the
form of time series with a time step of 1 year, and write the measurements as fXig, where Xi

is the measured value at time ti, i = 1; � � � ; n.
The data in this example have been obtained from freely available climatic temperature data
at the Web-location rimfrost.no.

In a trend analysis, Xi is expressed as a sum of two parts,

Xi = Ti + ri; (28)

where Ti is the trend and the remainder, ri = Xi � Ti, is called the residual. An example of a
trend curve and the residuals for the temperatures from Blindern, Oslo, is shown in Fig. 14.
The trend curve is slowly varying, and the residuals spread out evenly around the trend. This
is what we appreciate for a good trend curve.

The trend curve in Fig. 14 is produced by applying an irregularity penalty along with a least
square deviation from the trend. We are looking for the trend T in the same points as we have
the data. Since the trend curve should be centred in the middle of the data, it is �rst of all
reasonable to require that
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Figure 14: Data, trend and residuals for yearly mean temperatures from Blindern, Oslo. The trend
curve is computed by means of the Hodrick-Prescott �lter.
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nX
i=1

(Xi � Ti)2 (29)

is small, but not so small that the curve becomes too irregular. Let D2T be the operation in
Eqn. 25. If

n�1X
i=2

�
D2T

�2
i
= 0; (30)

all points of T lie on a straight line since then (D2T )i = 0 for i = 2; � � � ; n� 1. It is therefore
reasonable to consider the sum of the terms in Eqns. 29 and 30,

HP (T; �) =
nX
i=1

(Xi � Ti)2 + �
n�2X
i=2

�
D2T

�2
i
; (31)

and solve
T� = argmin

T
HP (T; �) : (32)

The trend curves range from the trivial T = X for � = 0, to the mean square linear regression
when �!1. Apart from the limiting cases, the solution of the linear least square problem in
Eqn. 31 cannot be carried out analytically for n of some size. However, no numerical problems
has been experienced, even if the dimension of the sparse linear system is equal to the number
of data points.

Data and trend curves for varying values of � are shown in Fig. 15. It is not obvious to say
what is the best.

These trend curves are called Hodrick-Prescott curves, and the algorithm is called the Hodrick-
Prescott �lter, named after the people who introduced the method to the economists in the
1990s (E. C. Prescott got the Nobel Prize in economics for 2004 together with the Norwegian
Finn Kydland). Nevertheless, the method is much older, dating back at least to the 1920s.

3.2 Problems containing noise

Real measurements are always su¤ering from various kinds of noise. The noise is unavoidable
and may be added to the signal, multiplied to the signal, or interfering in some other and more
complicated way. The analysis of random noise requires elements of stochastic signal analysis
which will not be covered in detail here.

The standard and very common situation is to have some additive noise in the data, as il-
lustrated in Fig. 16. A common source of noise is introduced by the digitalization of analog
signals. The noise may come from time or space digitization, as well as from the discretization
of the data values (called quatization noise). A CD or a digital video recording (DVD) are good
examples.

Let us consider the e¤ect of the noise on the SVD-solution x� =
Pr

j=1

u0jb

�j
vj. Using the basis
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Figure 15: Examples of trend curves for varying values of � (= �) in the Hodrick-Prescott �lter.
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Figure 16: System with additive noise in the result
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*Wb Ax δ= + ( )*
Wx W b=*Wb Ax δ= + ( )*
Wx W b=

Figure 17: The Wiener �lter puts the data through an additional �lter which tries to reproduce the
input as closely as possible in an averaged sense.

vectors in V and U , we may write

x =

nX
i=1

�ivi; (33)

� =

mX
j=1

�juj: (34)

Since

Ax+ � =
mX
k=1

(�k�k + �k)uk; (35)

and since the ui-s are orthogonal, u0juk = �jk, this gives

x� =
rX
i=1

u0i (Ax+ �)

�i
vi =

rX
i=1

�
�i +

�i
�i

�
vi: (36)

Noise on the components where �i is small is therefore particularly serious, although what
actually matters is the relative size of �i compared to �i=�i.

This introduces a connection between the regularization and the noise level: It is necessary to
choose the regularization, say the cut-o¤ in the SVD expansion in Eqn. 36, before the noise
starts to dominate.

3.3 Choosing the Right Regularization

Since the amount of necessary regularization depends on the noise level, inverse problem theory
has developed many rules which, for a given noise level, determine the amount of regularization.
In the following, we discuss some of the most popular methods.

3.3.1 The Wiener Filter

The Wiener �lter, introduced by Norbert Wiener in the 1940s, is based the idea of continuing
the graph in Fig.16, as shown in Fig. 17. The idea is to choose the �lter W � so that W � (b) is
close to x in an average optimal way,

W � = argmin
W
kW (Ax+ �)� xkS ; (37)

where kkS is some norm that averages over the signals we have at our disposal. We shall here
only derive the �lter for a very simple case, where we again utilize the SVD of the A-matrix,
A = U�V 0.
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Assume that the collection (ensemble) of all input signals are multivariate stochastic variables
in the form

x =
nX
i=1

�ivi; (38)

where f�ig are independent stochastic variables with zero mean, E�j = 0, (just for convenience)
and variance Var (�i) = s2i . Similarly, we assume that the noise � is written

� =
mX
j=1

�juj; (39)

with E�j = 0 and Var
�
�j
�
= n2j . Typically, nj is assumed to be constant, corresponding to �

being white noise. Thus, we have

E kxk2 =

nX
i=1

Var (�i) =
nX
i=1

s2i ; (40)

E k�k2 =
mX
j=1

n2j : (41)

The special kkS-norm averaging over the possible signals is now de�ned as

kxkS
�
=

q
E kxk2: (42)

From the SVD of A we obtain

Ax+ � =
mX
j=1

�
�j�j + �j

�
uj: (43)

Since we consider the Wiener �lter to be some kind of generalized inverse, we look for an
optimum �lter of the form

W = V �WU
0; (44)

where (�W )jj = wj. Thus,

W (Ax+ n)� x =
mX
i=1

fwi (�i�i + �i)� �ig vi �
nX

i=m+1

�ivi: (45)

The last term in the sum, belonging to N (A), is beyond our control. For the �rst term we have

E







mX
i=1

fwi (�i�i + �i)� �ig vi







2

=
mX
i=1

�
(wi�i � 1)2 s2i + w2i n2i

�
: (46)

Since each term in the sum is independent of all the others, we can minimize the sum term by
term. We leave to the reader to show that the optimum values of wj are

wj =
�js

2
j

�2js
2
j + n

2
j

; j = 1; � � � ;m (47)
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Applying the optimal Wiener �lter, we thus obtain

xWF =
mX
j=1

�js
2
j

�2js
2
j + n

2
j

�
u0jb
�
vj (48)

The coe¢ cients reduce to the standard generalized inverse when nj = 0, and we see the simi-
larity with the Tikhonov regularization taper when fsjg and fnjg are constant.
The Wiener �lter has for a long time been an important tool in optimal signal processing.
Look up the Wikipedia article about the Wiener �lter for other formulations depending on the
system.

3.3.2 Morozov�s Discrepancy Principle

If we know that our noisy data vector b� deviates from the exact data vector b at most with an
amount �;

kb� � bk � �; (49)

we have to accept all solutions x where

kAx� b�k � �: (50)

However, not all these x-s are equally reasonable. As we saw above for the ill-conditioned
Hilbert matrix problem, x can be quite large even if the residual is very small (In an in�nite-
dimensional Hilbert space, the set of x-vectors de�ned by the condition in Eqn. 50 is even
unbounded, unless R (A) is closed).
Assume that we have, as in Tikhonov regularization, a method with parameter � determining
the amount of regularization. The idea of Morozov�s Discrepancy Principle is to choose the
largest possible (i.e. the most cautious) � where x� satis�es

kAx� � b�k � �: (51)

Recall the solution of the Tikhonov regularization problem with an observation b� and an a
priori assumption x0:

x� = x0 +

mX
k=1

�2k
�2k + �

1

�k
u0k (b� � Ax0) vk: (52)

Let us further assume that
kAx0 � b�k > �; (53)

so that x0 is not an acceptable solution from the start. It is obvious that the last term in Eqn.
52 tends to 0 when � ! 1, so that the inequality 51 will be violated for large enough �-s.
However, it is not obvious that there exists a � at all so that x� satis�es 51. This will de�nitely
not hold if the distance from R (A) to b� is larger than �, that is,

min
y2Rn

kAy � b�k > �: (54)
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Figure 18: De�nition of the L-curve.

We leave to the reader to show, using the expression in Eqn. 52, that

kAx� � b�k �!
�!0

0 (55)

if b� 2 R (A) (First show this when x0 = 0. Then prove that the part in Eqn. 52 involving
x0 tends to 0 when multiplied by A). From this, it is easy to see that there will be acceptable
solutions as long as the distance between R (A) and b� is a little less than �. In this case,
Morozov�s Discrepancy Principle suggests that the proper regularization parameter is

�MDP = arg max
kAx��b�k��

� (56)

3.3.3 The L-curve

The L-curve as a general method for selecting the best regularization has been introduced
by Per Chr. Hansen, DTU. The idea is simple and again illustrated by means of Tikhonov
regularization in the form of an error term,

kAx� � bk ; (57)

and a penalty term
kLx�k : (58)

The L-curve is simply the trace of flog (kAx� � bk) ; log (kLx�k)g when � varies, and the optimal
value is found where the curve has its largest curvature. An example where the L-curve works
extremely well has been copied from P.C. Hansen�s book. The equation is the Fredholm integral
equation Z �=2

��=2
� (t; s)x (s) ds = b (t) ; (59)

with the kernel

� (t; s) = (cos s+ cos t)
sin2 (� (sin s+ sin t))

�2 (sin s+ sin t)2
; (60)
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Figure 19: The L-curve to the left with 3 values of � indicated. The optimal point is very well de�ned
in this case.

and a right hand side b computed from the prescribed solution

xsol (t) = a1 exp

 
�(t� t1)

2

c21

!
+ a2 exp

 
�(t� t2)

2

c22

!
(61)

Tikhonov Regularization is carried out with penalty for a large solution norm,

x� = argmin
�
kKx� bk2 + � kxk2

	
; (62)

and the result is shown in Fig. 19.

Unfortunately, the L-curve does not always work that well. In fact, it appears to be of little
value for the Hodrick-Prescott �lter. Per Chr. Hansen�s home page (see the references) contains
several notes related to the L-curve and many other interesting inverse problems.

4 ITERATIVE METHODS

Iterative methods �nd the solution in a step-wise manner, and in traditional courses in mathe-
matics, the focus is on convergence. The iteration should converge towards a solution, preferably
independent of the starting point. The same methods may also be used for inverse problems,
but in this case, one does not care about the convergence of the series. It is even sometimes
used where it is easy to see that the will method �nally diverge.

The trick is to start the iteration, and then stop at the right step, somewhat similar to computing
with divergent asymptotic series.

If we return to Ax = b for huge matrices, such matrices are often sparse (= containing mostly
0-s), and whereas it may be quite fast to carry out the matrix-vector product Ay for an arbitrary
y, carrying out an LU -factorization will be slow or even practically impossible if the storage of
the full matrices in core is impossible. This situation calls for some iterative solution, e.g. the
Conjugate Gradient (CG) method when A > 0. The Conjugate Gradient method is discussed
as an iterative method for the normal equations in Engl et al., Ch. 7.

For a quadratic system, Ax = b where A > 0, the simplest iteration is

xk+1 = xk + ! (b� Axk) ; (63)
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where the relaxation parameter, !, is chosen so that

kI � !Ak < 1: (64)

Equation 63 is recognized as the �x-point iteration for

x = F (x) = x+ ! (b� Ax) ; (65)

and Eqn. 64 as a su¢ cient condition for

sup
x;y

kF (x)� F (y)k
kx� yk < 1: (66)

(Look up �x-point iteration on the Web or in a textbook if this is unfamiliar).

Problem: Prove that with A > 0 and x0 = 0,

xk =
k�1X
j=0

(I � !A)j (!b) ; (67)

and kxk � A�1bk �!
k!1

0 when kI � !Ak < 1 (Hint: A�1 = [I � (I � !A)]�1 !).

The corresponding iteration for the normal equations A0Ax = A0b has the form

xk+1 = xk + !A
0 (b� Axk) ; (68)

and for ! = 1, this iteration is called Landweber Iteration (Engl et al., Ch. 6).

The iteration de�ned by Eqn. 63 is used in many di¤erent contexts, also for nonlinear problems
where an analytical analysis is out of reach. When data and input are of the same dimension,
the problem at hand will be to solve a nonlinear equation, which we write, in order to avoid
confusion with the linear case,

M (x) = d: (69)

Exactly as above, it is now reasonable to try

xk+1 = xk + ! (d�M (xk)) : (70)

This type of iteration is particularly attractive for large problems when the forward problem,
x!M (x), is relatively easy to solve, as will be the case for convolution operators where we can
utilize the Fast Fourier Transform. The method is popular, sometimes said to be �so popular
that it is re-invented twice a year�and in many application areas known under the name of the
Van Cittert Deconvolution Method.

In electromagnetic, electron, and NMR spectroscopy, the spectrum (as a function of frequency)
is highly irregular with typically high narrow (�-function like) peaks. However, since the in-
strument is not perfect, the peaks are "blurred", and will potentially hide smaller peaks that
are neighbours to large peaks. The issue it then to �de-blur�or deconvolve the data and obtain
a more accurate result with more details.
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The example in Fig. 20 illustrates this for simulated data. The blurring is a gaussian moving
average, and the �measurement�, mb, shown in the top plot, is simply the convolution between
the gaussian, g (�), and the ideal data, m (�),

mb (�) = g �m (�) =
Z
�0
m (� 0) g (� � � 0) d� 0: (71)

In the middle, we have the carried out 2000 iterations according to the formula

Xk+1 (�) = max [0; Xk + ! (mb (�)� g �Xk)] (72)

with ! = 1. The iteration breaks down for ! a little larger than 2. Also, if we know that the
exact function should be nonnegative, we may enforce that during the iterations. Compared
to the original measurements, the deconvolution has recovered the two small peaks around 0.1,
the broad peak at 0.2 and also the remaining narrow peaks. Around the most prominent peak
at 0.44, the solution has however become quite irregular. This kind of �over-compensation�is
common for Van Cittert deconvolution and related to the Gibbs oscillations in Fourier theory.
In conclusion, the de-blurring has only been partly successful.

It should be added that a Gaussian blur is a simple form of blurring, being monotone in the
sense that if the original function increases, then so does the blurred function. Van Cittert
deconvolution probably works best under such circumstances.

Here we have also assumed that the blurring function is known. There are, however, special
techniques for deriving the form of the blurring function (Point Spread Function) along with
the deconvolution, called blind deconvolution, which we not go into here.

In the following example we show the Van Cittert method applied to the most famous pic-
ture in image processing, Lena. The lady is Lena Söderberg (born Sjöblom) from Sweden
and the picture is from Playboy, November 1972. Interestingly enough, and perhaps typi-
cal for the pre-internet period, Lena Söderberg was not aware that her picture was exten-
sively used in image processing research before 1988! The history of the picture is found on
http://ndevilla.free.fr/lena/.

The 255 gray level picture here has 512�512 pixels and the blurring function is an approximately
two-dimensional Gaussian bell g (x) shown in Fig. 21. The deconvolution formula is similar to
Eqn. 72.

The result from the deconvolution using up to 20 iterations with ! = 2 is displayed in Fig. 22.
Increasing ! beyond 2 leads to instabilities as seen in Fig. 23.

Finally, Fig. 24 shows the original, the blurred and the restored picture after 20 iterations.

5 THE MAXIMUM ENTROPY PRINCIPLE

This, still somewhat controversial, principle for solving incompletely de�ned problems was
introduced by E.T. Jaynes in 1957. Read about the fascinating and diverse history of entropy
in physics and informatics on Wikipedia!

This section requires some rudimentary knowledge of variational calculus.
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Figure 20: Numerical simulation of deconvolution using the Van Cittert method. Top: �Measured�
signal; Middle: Deconvoluted signal; Lower: Ideal signal.

Consider the collection of probability distributions p (t) de�ned on a set 
,

D =
�
p (t) ; t 2 
; p (t) � 0;

Z



p (t) dt = 1

�
: (73)

Note that D is convex. The entropy (also called Shannon Entropy or Information Entropy) of
a probability distribution was introduced by Claude E. Shannon in 1948,

H (p) = �
Z



p (t) ln p (t) dt: (74)

A similar expression applies for a discrete distribution. The entropy expresses the degree of
uncertainty about a stochastic variable: Consider a binary variable taking the value 0 with
probability a and the value 1 with probability 1 � �. Compare H for no uncertainty (� ! 0
or 1) with maximum uncertainty (� = 1=2).
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Figure 21: Point Spread Function used in the Lena example. Axes show pixels.

If the integral over 
 is equal to 1,
R


dt = 1, then H (p) is maximized for p (t) � 1. Try to

�gure out your own argument, or consider the convex Lagrangian

L (p; �) =
Z



p (t) ln p (t) dt+ �

�Z



p (t) dt� 1
�
; (75)

and solve �L (p; v; �) = 0.

Assume that measurements of the stochastic variable X have given us some information about
its probability distribution p. Quite often we�ll have estimates about integral properties likeZ




gj (t) p (t) dt = dj; j = 1; � � � ;m: (76)

Recall that the mean value and the mean of the squares are of this form. So is also the
requirement

R


p (t) dt = 1. The question is now: What is the best probability distribution

p satisfying Eqn. 76? Let us maximize the entropy (equivalent to minimizing the negative
entropy) subject to the constraints enforced by the data equations in Eqn. 76.

min
p2D

L (p; �) = min
p2D

(Z



p (t) ln p (t) dt�
mX
j=1

�j

�Z



gj (t) p (t) dt� dj
�)

: (77)

Obviously, all allowed variations v in p have to satisfy p (t) + � (t) � 0 and
R


v (t) dt = 0. If

we compute the derivative of L (p; �), and set this equal to 0,

�L (p; v; �) =

Z



(
ln p (t) + 1�

mX
j=1

�jgj (t)

)
v (t) dt = 0; (78)

we obtain,

p (t) = exp

 
mX
j=1

�jgj (t)� 1
!
: (79)

It remains to �nd �1; � � � ; �m, and this amounts to solving the m nonlinear equationsZ



gj (t) exp

 
mX
j=1

�jgj (t)

!
dt = dj; j = 1; � � � ;m: (80)
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Figure 22: Van Cittert deconvolution applied to a blurred version of Lena.

Problem: For 
 = R, solve the problem

p� = argmin
p2D

f�H (p)g ; (81)

when Z
R
p (t) dt = 1; (82)Z

R
tp (t) dt = 0; (83)Z

R
t2p (t) dt = 1: (84)

The maximum entropy functional serves as a regularization for severely under-determined in-
verse problems. If we have some a priori information we would like to incorporate into the
regularization, this may be done by using the cross-entropy, de�ned as

H (p) = �
Z



p (t) ln

�
p (t)

p0 (t)

�
dt: (85)

Show that the global maximum of H (without further constraints) is obtained for p = p0.
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Figure 23: Same as previous �gure, but with ! = 2:3. The deconvolution is no longer stable, resulting
in over-compensation. In this case, the iteration clearly has to stop at the right place.

Figure 24: Original image (center), blurred image to the left, and deconvoluted image (! = 2, 20
iterations) to the right.
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6 EPILOGUE

This summary of inverse problems is quite incomplete. In particular, probabilistic and Bayesian
reasoning for inverse problems is a fast growing �eld which has been discussed. The freely
available book of Albert Tarantola in the reference list discusses this in detail and contains
many additional references.

Another omission is the inverse scattering theory for nonlinear partial di¤erential equations
developed during the last 50 years.

Internet encyclopedias such as Wolfram MathWorld and Wikiperia are important sources for
further information.
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