TMA 4180 Optimeringsteori

A worked example for the KKT theorem
Spring 2010

Objective function:

$$
\begin{equation*}
f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2} \tag{1}
\end{equation*}
$$

Constraints:

$$
\begin{align*}
& c_{1}(x)=5-x_{1}^{2}-x_{2}^{2} \geq 0 \tag{2}\\
& c_{2}(x)=6-3 x_{1}-x_{2} \geq 0 \tag{3}
\end{align*}
$$

Since the objective function is continuous and Ω is finite (why?), we certainly have minima.

The Lagrange function:

$$
\begin{equation*}
\mathcal{L}(x, \lambda)=f(x)-\lambda_{1} c_{1}(x)-\lambda_{2} c_{2}(x) . \tag{4}
\end{equation*}
$$

The KKT-points are solutions of

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial x_{1}}(x, \lambda) & =4 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{1}+3 \lambda_{2}=0 \tag{5}\\
\frac{\partial \mathcal{L}}{\partial x_{2}}(x, \lambda) & =2 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{2}+\lambda_{2}=0 \tag{6}\\
\lambda_{1}\left(5-x_{1}^{2}-x_{2}^{2}\right) & =0 \tag{7}\\
\lambda_{2}\left(6-3 x_{1}-x_{2}\right) & =0 \tag{8}\\
\lambda_{1}, \lambda_{2} & \geq 0 \tag{9}
\end{align*}
$$

There are 4 possibilities for active constraints at the solution:

1. No active constraints
2. c_{1} active and c_{2} inactive
3. c_{2} active and c_{1} inactive
4. Both c_{1} and c_{2} active

Case 1: No active constraints

Must have $\lambda_{1}=\lambda_{2}=0$, and the minimum will occur for a point where

$$
\begin{equation*}
\nabla \mathcal{L}(x, 0)=\nabla f(x)=0 \tag{10}
\end{equation*}
$$

Leads to:

$$
\begin{align*}
& 4 x_{1}+2 x_{2}-10=0 \tag{11}\\
& 2 x_{1}+2 x_{2}-10=0 \tag{12}
\end{align*}
$$

Solution:

$$
\begin{align*}
& x_{1}^{*}=0, \tag{13}\\
& x_{2}^{*}=5 \tag{14}
\end{align*}
$$

However,

$$
\begin{align*}
& c_{1}\left(x^{*}\right)=5-0-5^{2}=-20 \text { (Violation!) } \tag{15}\\
& c_{2}\left(x^{*}\right)=6-0-5=1 \text { (OK!) } \tag{16}
\end{align*}
$$

Case 4: Both constraints active

$$
\begin{align*}
& c_{1}(x)=5-x_{1}^{2}-x_{2}^{2}=0, \tag{17}\\
& c_{2}(x)=6-3 x_{1}-x_{2}=0 \tag{18}
\end{align*}
$$

Quadratic equation for x_{1} :

$$
\begin{equation*}
10 x_{1}^{2}-36 x_{1}+31=0 \tag{19}
\end{equation*}
$$

with two solutions (and two possible points:

$$
\begin{align*}
& x_{a}=(2.17 \ldots,-0.52 \ldots), \tag{20}\\
& x_{b}=(1.42 \ldots, 1.72 \ldots) . \tag{21}
\end{align*}
$$

We need to check the Lagrange multipliers $\left(\nabla_{x} \mathcal{L}=0\right)$:

$$
\begin{array}{r}
4 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{1}+3 \lambda_{2}=0 \\
2 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{2}+\lambda_{2}=0 . \tag{23}
\end{array}
$$

Hence,

$$
\begin{equation*}
\lambda_{1}=\frac{10-2 x_{2}-x_{1}}{3 x_{2}-x_{1}}, \lambda_{2}=-\left(2 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{2}\right) \tag{24}
\end{equation*}
$$

The point x_{a} gives

$$
\begin{equation*}
\lambda_{1}=-2.37 \ldots, \lambda_{2}=4.22 \ldots \tag{25}
\end{equation*}
$$

Thus, x_{a} is unacceptable.
Similarly, the point x_{b} gives

$$
\begin{equation*}
\lambda_{1}=1.7 \ldots, \lambda_{2}=-2.04 \ldots \tag{26}
\end{equation*}
$$

Also x_{b} in unacceptable.

Case 3: c_{1} inactive, c_{2} active

Since c_{2} is active:

$$
6-3 x_{1}-x_{2}=0 .
$$

Thus,

$$
\begin{equation*}
x_{2}=6-3 x_{1}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x_{1}, 6-3 x_{1}\right)=5 x_{1}^{2}-4 x_{1}-24 . \tag{28}
\end{equation*}
$$

The (global) minimum occurs for $d f / d x=0$, or

$$
\begin{equation*}
x_{1}=\frac{2}{5}, x_{2}=\frac{24}{5} \tag{29}
\end{equation*}
$$

However,

$$
\begin{equation*}
c_{1}\left(x_{1}, x_{2}\right)=5-\left(\frac{2}{5}\right)^{2}-\left(\frac{24}{5}\right)^{2}=-\frac{91}{5}<0! \tag{30}
\end{equation*}
$$

We assumed that c_{1} was inactive, but this is not a guarantee for not violating it!

Case 2: Only c_{1} is active

$\lambda_{2}=0:$

$$
\begin{array}{r}
\left(\frac{\partial \mathcal{L}}{\partial x_{1}}=\right) 4 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{1}=0 \\
\left(\frac{\partial \mathcal{L}}{\partial x_{2}}=\right) 2 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{2}=0 \\
x_{1}^{2}+x_{2}^{2}=5 \tag{33}
\end{array}
$$

Solution:

$$
\begin{align*}
& x_{1}^{*}=1, \\
& x_{2}^{*}=2, \tag{34}\\
& \lambda_{1}^{*}=1 .
\end{align*}
$$

This looks promising, but we must also check c_{2} :

$$
c_{2}(1,2)=6-3-2=5>0 \quad(\mathrm{OK}!)
$$

(NB! There is also another solution of Eqns. 31 - 33. Find it, and prove it is NOT a KKT point!)

The only KKT-point is (1,2), and since we know that a minimum exists, this is it!
Exercise: Consider convexity for this problem. Do we need to check the other point in Case 2?

