THE LP PROBLEM IN STANDARD FORM

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} c^{\prime} x \\
A x=b, x \geq 0
\end{gathered}
$$

- $x \geq 0$ means $x_{i} \geq 0, i=1, \cdots, n$.
- A of size $r \times n$ is supposed to have full rank r.
- Ω is a polytope (polyhedron if bounded).
- This is a convex optimization problem $\Rightarrow \mathrm{KKT}$ conditions sufficient for a global minimum.

GEOMETRY OF THE FEASIBLE SET

Definition: The point $x_{e} \in \partial \Omega(=$ the boundary of Ω) is an extreme point if

$$
x_{e}=\theta y+(1-\theta) z, y, z \in \Omega, 0<\theta<1
$$

implies that $y=z=x_{e}$.

Where are the extreme points for a line segment, for \mathbb{R} and \mathbb{R}_{+}^{n}, a cube, and a sphere (all sets closed)?

The extreme points for Ω are the vertices.

Definition: A feasible point $x(x \geq 0, A x=b)$ is called a basic point if there is an index set $\mathcal{B}=\left\{i_{1}, \cdots, i_{r}\right\}$, where the corresponding subset of columns of A,

$$
\left\{a_{i_{1}}, \cdots, a_{i_{r}}\right\}
$$

are linearly independent, and $x_{i}=0$ for all $i \notin \mathcal{B}$.

If x_{i} happens to be 0 also for some $i \in \mathcal{B}$, we say that the basic point is degenerate.

For a basic point, the corresponding $r \times r$ matrix

$$
B=\left[a_{i_{1}}, \cdots, a_{i_{r}}\right]
$$

will be non-singular, and the equation $B x_{B}=b$ has a unique solution.

The Fundamental Theorem for LP (N\&W Theorem

 13.2):1. If $\Omega \neq \varnothing$, it contains basic points.
2. If there are optimal solutions, there are optimal basic points (basic solutions).

Theorem (N\&W Theorem 13.3): The basic points are the extreme points of Ω.

The number of basic points is between 1 (because of the first statement in the Fundamental Theorem) and $\binom{n}{r}$.

THE SIMPLEX ALGORITHM

- The Simplex Algorithm is reported to have been discovered by G. B. Dantzig in 1947.
- The idea of the Simplex Algorithm is to search for the minimum by going from vertex to vertex (from basic point to basic point) in Ω.
- Hand calculations are never used anymore!

The Simplex Iteration Step

We assume that the problem has the standard form, and that we are located in a basic point which, after a rearrangement of variables, has the form

$$
x=\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]
$$

The partition is therefore according to $A=[B N]$, where B is non-singular, and

$$
A x=\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]=B x_{B}=b .
$$

Split a general $x \in \Omega$ in the same way,

$$
A x=\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=B x_{1}+N x_{2}=b
$$

Hence,

$$
x_{1}=B^{-1}\left(b-N x_{2}\right)=x_{B}-B^{-1} N x_{2} .
$$

Note also that

$$
\begin{aligned}
f(x) & =c^{\prime} x=\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =c_{1}^{\prime} x_{1}+c_{2}^{\prime} x_{2} \\
& =c_{1}^{\prime}\left(x_{B}-B^{-1} N x_{2}\right)+c_{2}^{\prime} x_{2} \\
& =c_{1}^{\prime} x_{B}+\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) x_{2}
\end{aligned}
$$

Around $\left[x_{B} 0\right]^{\prime}$, we may express both x_{1} and $f(x)$ in terms of x_{2}.

We are located at $x_{1}=x_{B}, x_{2}=0$, and try to change one of the components $\left(x_{2}\right)_{j}$ of x_{2} so that

$$
f(x)=c_{1}^{\prime} x_{B}+\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) x_{2}
$$

decreases.

- If $\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) \geq 0 \Rightarrow$ FINISHED!

Assume that $\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right)_{j}<0$:

- If all components of x_{1} increase when $\left(x_{2}\right)_{j}$ increases, then

$$
\min c^{\prime} x=-\infty
$$

\Rightarrow FINISHED!

If not, we have the situation shown in Fig. 1.

Figure 1: Change in x_{1} when $\left(x_{2}\right)_{j}$ increases from 0.

- The Simplex algorithm always converges if all basic points are non-degenerate.
- Degenerate basic point: Try a different component of x_{2}. (FINISHED if impossible!)
- It is straightforward to construct a generalized Simplex Algorithm for bounds of the form

$$
l_{i} \leq x_{i} \leq u_{i}, i=1, \cdots, n .
$$

- If we $L U$-factorize B once, we can update the factorization with the new column without making a complete new factorization (N\&W, Sec. 13.4).
- It is often preferable to take the "steepest ridge" (fastest decrease in the objective) out from where we are (N\&W, Sec. 13.5).

Starting the Simplex Method

The Simplex method consists of two phases:

- Phase 1: Find a first basic point
- Phase 2: Solve the original problem

The Phase 1 algorithm:

1. Turn the signs in $A x=b$ so that $b \geq 0$.
2. Introduce additional variables $y \in \mathbb{R}^{r}$ and solve the extended problem

$$
\begin{gathered}
\min \left(y_{1}+\cdots+y_{r}\right), \\
{\left[\begin{array}{ll}
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=b, \quad x, y \geq 0 .}
\end{gathered}
$$

(Note that $[0 b]^{\prime}$ already is a basic point for the extended problem!).

Assume that the solution of the extended problem is

$$
\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

- If $y_{0} \neq 0$, then the original problem is infeasible $(\Omega=\varnothing)$.
- If $y_{0}=0$, then x_{0} is a basic point ($=$ possible start for the original problem).
- This is not the only Phase 1 algorithm.

1 EPILOGUE

- Open Problem: Are there LP algorithms of polynomial complexity?
- The Simplex Method has exponential complexity in the worst case (Kree-Minty-Cheval counterexample)
- Interior Point Methods (Khatchiyan, 1978): \#Op \propto $\mathcal{O}\left(n^{4} L\right)$
- Karmankar (1984): $\# O p \propto \mathcal{O}\left(n^{3.5} L\right)$
- Current record (?): Interior Barrier Primal-Dual methods, $\# O p \propto \mathcal{O}\left(n^{3} L\right)$. (We return to this method after discussing penalty and barrier methods)
- Solving large LP problems is BIG business!
- Entering data into the computer for large LP problems is a lot of work. Look up a description of the industry standard "MPS Data Format" on the internet.

LINEAR PROGRAMMING IN MATLAB OPTIMIZATION TOOLBOX
 (may be a little outdated!)

Basic function: linprog

Solves the general LP-problem

$$
\begin{gathered}
\min _{x} f^{\prime} x, \\
A x \leq b \\
A_{e q .} x=b_{e q .} \\
l b \leq x \leq u b
\end{gathered}
$$

where $f, x, b, b_{e q}, l b$, and $u b$ are vectors and $A, A_{e q}$ are matrices (may be entered as sparse matrices)

Syntax:

$x=\operatorname{linprog}(f, A, b, A e q, b e q)$
$x=\operatorname{linprog}(f, A, b, A e q$, beq, lb, ub)
$x=\operatorname{linprog}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq, lb, ub, x0)
$x \quad=\quad \operatorname{linprog}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq, $\mathrm{lb}, \mathrm{ub}, \mathrm{x0}$, options)
[x,fval]
[x,fval,exitflag]
$=$ linprog(...)
[x,fval,exitflag,output]
= linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Example: The Standard form:

$$
\begin{gathered}
\min c^{\prime} x \\
A x=b \\
x \geq 0 \\
x=\operatorname{linprog}(\mathrm{c},[\mathrm{]},[\mathrm{]}, \mathrm{~A}, \mathrm{~b}, \mathrm{zeros}(\operatorname{size}(\mathrm{c})),[\mathrm{]})
\end{gathered}
$$

- Note the Matlab convention with placeholders, "[]"

INPUT:

xo: Starting point. Used only for medium problems (NelderMead amoeba).

Options: Structure of parameters

LargeScale: 'on'/'off'
Display: 'off'/'iter'/'final' (large scale problems)
MaxIter: Max number of iterations
Simplex: 'on'/’off' ('on' ignores x0)
TolFun: Objective tolerance (large scale problems)

OUTPUT:

x,fval: Solution and objective

exitflag:

1 Iteration terminated OK
0 Number of iterations exceeded MaxIter
-2 No feasible point found
-3 Problem is unbounded
-4 NaN value encountered
-5 Both primal and dual are infeasible
-7 Search direction became too small
output: Structure of iteration information
iterations: Number of iterations
algorithm: Algorithm used
cgiterations: The number of PCG iterations (large-scale algorithm only)
message: Output message
lambda: Structure of Lagrange multipliers
ineqlin: \quad for linear inequalities $\mathrm{Ax} \leq \mathrm{b}$,
eqlin
lower
upper for linear equalities $A_{\text {eq }} x=b_{\text {eq }}$, for lb, for ub.

ALGORITHMS:

Small/Medium scale:
Large scale:

SIMPLEX-like including Phase 1
Primal-dual inner method

EXAMPLES FROM THE DOCUMENTATION

A. Small Problem

Find x that minimizes
subject to

$$
f(x)=-5 x_{I}-4 x_{2}-6 x_{3}
$$

$$
\begin{array}{r}
x_{1}-x_{2}+x_{3} \leq 20 \\
3 x_{1}+2 x_{2}+4 x_{3} \leq 42 \\
3 x_{1}+2 x_{2} \leq 30 \\
0 \leq x_{1}, 0 \leq x_{2}, 0 \leq x_{3}
\end{array}
$$

First, enter the coefficients, then call LINPROG:
$f=\left[\begin{array}{lll}-5 & -4 & -6\end{array}\right]^{\prime} ;$
A $=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right.$
324
320];
b $=\left[\begin{array}{ll}20 & 42 \\ 30\end{array}\right]^{\prime} ;$
$\mathrm{lb}=$ zeros $(3,1)$;
[x,fval,exitflag,output,lambda] = ... linprog(f,A,b,[],[],lb);

$$
x \quad=\quad\left[\begin{array}{lll}
0 & 15 & 3
\end{array}\right]
$$

fval $=-78.0$
output:
iterations: 6
algorithm: 'large-scale: interior point' (!)
cgiterations: 0
message: 'Optimization terminated.'
lambda.ineqlin $=\left[\begin{array}{lll}0 & 1.5 & 0.5\end{array}\right]$
lambda.lower $=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$

For solution by the Simplex method:

$$
\begin{aligned}
& \mathrm{f}=\left[\begin{array}{ccc}
-5 & -4 & -6
\end{array}\right]^{\prime} ; \\
& \mathrm{A}=\left[\begin{array}{cccc}
1 & -1 & 1 \\
3 & 2 & 4 \\
3 & 2 & 0
\end{array}\right] ; \\
& \mathrm{b}=\left[\begin{array}{lll}
20 & 42 & 30
\end{array}\right] ; \\
& \mathrm{lb}=\operatorname{zeros}(3,1) ;
\end{aligned}
$$

options = optimset('LargeScale','off','Simplex','on');
[x,fval,exitflag,output,lambda] = ...
linprog(f,A,b,[],[],lb,[],[],options);
(NB! If you forget enough placeholders, [] , you get the error message "LINPROG only accepts inputs of data type double")

Now output gives:
iterations: 3
algorithm: 'medium scale: simplex'
cgiterations:
message:
'Optimization terminated.'
(same solution!)

B Medium Problem

This problem is stored as a Matlab MAT-file.

- 48 unknowns
- 30 inequality constraints
- 20 equality constraints
- $x \geq 0$

Entered into Matlab simply by
load sc50b

A	30×48	(sparse)
Aeq	20×48	(sparse)
b	30×1	
beq	20×1	
f	48×1	
lb	48×1	

Sparsity patterns:

A (inequalitites)

$\mathrm{A}_{\text {eq }}$ (equalities)

\Rightarrow load sc50b

options = optimset('LargeScale','off','Simplex','on');
[x,fval,exifflag,output,lambda] = ... linprog(f,A,b,Aeq,beq,lb,[],[],options);
$x=\left[\begin{array}{llll}30 & 28 & 42 & \ldots \\ 102.4870\end{array}\right]$

Only lambda.ineqlin(2) and lambda.ineqlin(3) equal to 0 : only inequality 2 and 3 non-active.
$\max ($ lambda.lower $)=8.2808 \mathrm{e}-015 \Rightarrow \mathrm{x}_{i}>0$ for $i=1, \cdots, 48$.
output =
iterations: 43
algorithm: 'medium scale: simplex'
cgiterations:
message: 'Optimization terminated.'

Large scale option:
options = optimset('LargeScale','on');
[x,fval,exitflag,output,lambda] = ...
linprog(f,A,b,Aeq,beq,lb,[],[],options);
output =
iterations: 8
algorithm: 'large-scale: interior point'
cgiterations: 0
message: 'Optimization terminated.'
Same solution!

With display of results for each iteration: options = optimset('LargeScale','on','Display',',iter');

| Residuals: | Primal
 Infeas
 A*x-b | Dual
 Infeas
 A'*y+z-f | Duality
 Gap
 ('*z | Total
 Rel |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Error | | | | |

FOR MORE INFO: Read documentation of linprog!

OPTIMIZATION SOFTWARE - 2010
 http://wiki.mcs.anl.gov/NEOS/index.php/NEOS Wiki
 (NEOS $=$ Network-Enabled Optimization System)

- AIMMS modeling system
- AMPL modeling language.
- ANALYZE linear programming model analysis.
- APOPT - nonlinear programming.
- APMonitor modeling language.
- ASA - adaptive simulated annealing.
- BPMPD - linear programming.
- BQPD - quadratic programming.
- BT-minimization.
- BTN - block truncated Newton.
- CBC - mixed-integer linear programming.
- CML - constrained maximum likelihood.
- CNM - linear algebra and minimization.
- \quad CO - constrained optimization.
- COMPACT - design optimization.
- CONOPT - nonlinear programming.
- CONSOL-OPTCAD - engineering system design.
- CONTIN - systems of nonlinear equations.
- CLP - linear programming.
- CPLEX - linear programming.
- C-WHIZ - linear programming models.
- DATAFORM - model management system.
- DFNLP - nonlinear data fitting.
- DOC - Design Optimization Control Program.
- DONLP2 - nonlinear constrained optimization.
- DOT - Design Optimization Tools.
- EASY FIT - parameter estimation in dynamic systems.
- Excel and Quattro Pro Solvers -spreadsheet-based linear, integer and nonlinear programming
- EZMOD - modeling environment for decision support systems
- FortMP - linear and mixed integer quadratic programming.
- FSQP - nonlinear and minmax constrained optimization, with feasible iterates.
- GAMS - General Algebraic Modeling System.
- GAUSS - matrix programming language.
- GENESIS - structural optimization software.
- GENOS 1.0 - nonlinear network optimization.
- GINO - nonlinear programming.
- GRG2 - nonlinear programming.
- GOM - Global Optimization for Mathematica.
- GUROBI - linear programming.
- HOMPACK - nonlinear equations and polynomials.
- HOPDM - linear programming (interiorpoint).
- HARWELL Library - linear and nonlinear programming, nonlinear equations, data fitting.
- HS/LP Linear Optimizer - linear programming.
- ILOG - constraint-based programming and nonlinear optimization.
- IMSL - Fortran and C Library.
- IPOPT - nonlinear programming.
- KNITRO - nonlinear programming.
- KORBX - linear programming.
- LAMPS - linear and mixed-integer programming.
- LANCELOT - large-scale problems.
- LBFGS - unconstrained minimization.
- LBFGS-B - bound-constrained minimization.
- LGO IDE - continuous and Lipschitz global optimization.
- LINDO - linear, mixed-integer and quadratic programming.
- LINGO - modeling language.
- LIPSOL - linear programming.
- LNOS - linear programming/network flow problems.
- LOQO - Linear programming, unconstrained and constrained nonlinear optimization.
- LP88 and BLP88 - linear programming.
- LSGRG2 - nonlinear programming.
- LSNNO - large scale optimization.
- LSSOL - least squares problems.
- M1QN3 - unconstrained optimization.
- MATLAB - optimization toolbox.
- MAXLIK - maximum likelihood estimation.
- MCS - global optimization.
- MILP88 - mixed integer programming.
- MINOS - linear programming and nonlinear optimization.
- MINTO - mixed integer linear programming.
- MINPACK-1 - nonlinear equations and least squares.
- MIPIII - mixed integer programming.
- MODFIT - parameter estimation in dynamic systems.
- MODLER - linear programming modeling language.
- MODULOPT - unconstrained problems and simple bounds.
- MOSEK - linear programming and convex optimization.
- MPL - modeling system
- MPSIII - mathematical programming system.
- NAG C Library - nonlinear and quadratic programming, minimization
- NAG Fortran Library - nonlinear and quadratic programming, minimization
- NETFLOW - network optimization.
- NITSOL - systems of nonlinear equations.
- NLopt - local and global nonlinear optimization, including nonlinear constraints, with and without usersupplied gradients
- NLPE - minimization and least squares problems.
- NLPJOB - Mulicriteria optimization.
- NLPQL - nonlinear programming.
- NLPQLB - nonlinear programming with constraints.
- NLSSOL - constrained nonlinear least squares problems.
- NLPSPR - nonlinear programming.
- NOVA - nonlinear programming.
- NPSOL - nonlinear programming.
- ODRPACK - NLS and ODR problems.
- OML - linear and mixed-integer programming, model management.
- OPL Studio - optimization language and solver environment.
- OPTDES - design optimization tool.
- OPTECH - global optimization.
- OptiA - unconstrained, constrained, quadratic, minimax, nonsmooth, and global optimization
- OPTIMA Library - optimization and sensitivity analysis.
- OPTIMAX - component software for optimization
- OPTMUM - optimization.
- OPTPACK - constrained and unconstrained optimization.
- OptQuest - global optimization
- OSL - linear, quadratic and mixedinteger programming.
- PCOMP - modelling language with automatic differentiation.
- PCx - linear programming with a primal-dual interior-point method.
- PDEFIT - parameter estimation in partial differential equations.
- PETSc - parallel solution of nonlinear equations and unconstrained minimization problems.
- PLAM - algebraic modeling language for mixed integer programming, constraint logic programming, etc.
- PORT 3 - minimization, least squares, etc.
- PROC LP - linear and integer programming.
- PROC NETFLOW - network optimization.
- PROC NLP - various quadratic and nonlinear optimization problems.
- PROPT - optimal control software for MATLAB users.
- Q01SUBS - quadratic programming for matrices.
- QAPP - quadratic assignment problems.
- QL - quadratic programming.
- QPOPT - linear and quadratic problems.
- RANDMOD - linear programming model randomizer.
- SCIP - mixed-integer linear programming.
- SIMUSOLV - modeling software.
- SPRNLP - sparse and dense nonlinear programming, sparse nonlinear least squares, including the SOCS package for optimal control
- SPEAKEASY - numerical problems and operations research.
- SNOPT - large-scale quadratic and nonlinear programming problems.
- SQOPT - large-scale linear and convex quadratic programming problems.
- SQP - nonlinear programming.
- SYMPHONY - mixed-integer linear programming.
- SYNAPS Pointer - multidisciplinary design optimization software
- SYSFIT - parameter estimation in systems of nonlinear equations.
- TENMIN - unconstrained optimization.
- TENSOLVE - nonlinear equations and least squares.
- TN/TNBC - minimization.
- TNPACK - nonlinear unconstrained minimization.
- TSA88 - network linear programming.
- TOMLAB - Matlab Optimization.
- UNCMIN - unconstrained optimization.
- VE08 - nonlinear optimization.
- VE10 - nonlinear least squares.
- VIG and VIMDA - decision support system.
- What'sBest - linear and mixed integer programming.
- WHIZARD - linear programming, mixed-integer programming.
- XLSOL - Linear, integer and nonlinear programming for AMPL models
- XPRESS-MP from Dash Associates linear and integer programming.

TMA 4180 Optimeringsteori

Minimum Cost Network Flow Analysis Using LP

Harald E. Krogstad

March 2007

An arc is characterized by

- Prize pr. flow unit along arc
- Lower bound (for initiating transport)
- Upper bound (capacity)

Sink

Source

Sources: (Production/providers)

- Capacity
- Cost pr. unit delivered to the network

Sinks (Consumers/receivers):

- Capacity
- Income to network from deliveries

Source: Production $b>0$.
Sink: Absorption, $b<0$.

Variables $x=\left\{x_{i}\right\}, x_{i} \geq 0$. (flow in the arcs)
NB! 2 variables for each arc: 2 directions
Node: $\quad \sum_{\text {inflow }} x_{i}=\sum_{\text {outflow }} x_{i}$

Source/Sink: $\quad b_{s}=\sum_{\text {outflow }} x_{i}-\sum_{\text {inflow }} x_{i}$

A balanced network: $\sum_{\text {Sources/sinks }} b_{s}=0$

Price for delivery: $f(x)=\sum_{\text {arcs }} c_{i} x_{i}=c^{\prime} x$

Cost for one unit along arc "i": $\quad\left\{c_{i}\right\}$
Upper bound on capacity for arc "f": $\left\{u b_{i}\right\}$
Lower bound on capacity for arc "i": $\left\{l b_{i}\right\}$

The LP formulation:

$$
\begin{gathered}
\min _{x} c^{\prime} x \\
\sum_{\text {outflow }} x_{i}-\sum_{\text {inflow }} x_{i}=b_{n}, n=1, \ldots, \text { Nodes, } \\
l b \leq x \leq u b . \\
\begin{array}{c}
\min _{x} c^{\prime} x \\
A_{e q} x=b_{e q} \\
l b \leq x \leq u b
\end{array}
\end{gathered}
$$

The matrix is a sparse matrix with only $-1,0$, and -1

Simsys_sparse

8 Matlab ${ }^{\circ}$ Central

An open exchange for the MATLAB and Simulink user community
http://www.mathworks.com/matlabcentral/

Per Bergström
Luleå University of Technology

RANDOM NETWORK GENERATION

Prescribe:

- Numbers of sources and sinks
- Max number of arcs around one node
- Min number of arcs around one node
- Random upper bound
- Distribution of nodes
- Interactive network modification
- Random costs

The algorithm provides:

- Number of nodes
- Upper bound of capacity
- $A_{\text {eq }}$ matrix
- Balanced production/consumption at the sources and sinks
[Aeq,beq,lb,ub,c]=simsys_sparse(100);
Solution in Matlab: $x=\operatorname{linprog}(c,[],[], A e q, b e q, \mid b, u b)$

RANDOMLY GENERATED NETWORK

The LP-problem:

- Number of arcs: 304
- Lower bounds: 0
- Upper bounds:
- Equality constraints: 48

Costs

Practical Optimization: A Gentle Introduction John W. Chinneck
 Systems and Computer Engineering
 Carleton University
 Ottawa, Ontario K1S 5B6
 Canada
 http://www.sce.carleton.ca/faculty/chinneck/po.html

(very soft introduction ©)

