
THE LP PROBLEM IN STANDARD

FORM

min
x2Rn

c0x;

Ax = b; x � 0:

� x � 0 means xi � 0; i = 1; � � � ; n:

� A of size r � n is supposed to have full rank r:

� 
 is a polytope (polyhedron if bounded).

� This is a convex optimization problem) KKT con-
ditions su¢ cient for a global minimum.



GEOMETRY OF THE FEASIBLE SET

De�nition: The point xe 2 @ 
 (= the boundary of

) is an extreme point if

xe = �y + (1� �) z ; y; z 2 
 ; 0 < � < 1

implies that y = z = xe.

Where are the extreme points for a line segment, for R
and Rn+, a cube, and a sphere (all sets closed)?

The extreme points for 
 are the vertices.
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De�nition: A feasible point x ( x � 0, Ax = b) is called
a basic point if there is an index set B = fi1; � � � ; irg,
where the corresponding subset of columns of A,n

ai1; � � � ; air
o
;

are linearly independent, and xi = 0 for all i =2 B.

If xi happens to be 0 also for some i 2 B, we say that
the basic point is degenerate.

For a basic point, the corresponding r � r matrix

B =
h
ai1; � � � ; air

i
;

will be non-singular, and the equation BxB = b has a
unique solution.



The Fundamental Theorem for LP (N&W Theorem
13.2):

1. If 
 6= ?, it contains basic points.

2. If there are optimal solutions, there are optimal basic
points (basic solutions).

Theorem (N&W Theorem 13.3): The basic points are
the extreme points of 
.

The number of basic points is between 1 (because of the
�rst statement in the Fundamental Theorem) and

�
n
r

�
:



THE SIMPLEX ALGORITHM

� The Simplex Algorithm is reported to have been dis-
covered by G. B. Dantzig in 1947.

� The idea of the Simplex Algorithm is to search for
the minimum by going from vertex to vertex (from
basic point to basic point) in 
.

� Hand calculations are never used anymore!

The Simplex Iteration Step

We assume that the problem has the standard form, and
that we are located in a basic point which, after a re-
arrangement of variables, has the form

x =

"
xB
0

#
:



The partition is therefore according toA = [B N ], where
B is non-singular, and

Ax = [B N ]

"
xB
0

#
= BxB = b:

Split a general x 2 
 in the same way,

Ax = [B N ]

"
x1
x2

#
= Bx1 +Nx2 = b:

Hence,

x1 = B
�1 (b�Nx2) = xB �B�1Nx2:

Note also that

f (x) = c0x = [c1 c2]

"
x1
x2

#
= c01x1 + c

0
2x2

= c01
�
xB �B�1Nx2

�
+ c02x2

= c01xB +
�
c02 � c01B�1N

�
x2

Around [xB 0]
0, we may express both x1 and f (x) in

terms of x2:



We are located at x1 = xB, x2 = 0, and try to change
one of the components (x2)j of x2 so that

f (x) = c01xB +
�
c02 � c01B�1N

�
x2

decreases.

� If
�
c02 � c01B�1N

�
� 0 ) FINISHED!

Assume that
�
c02 � c01B�1N

�
j
< 0:

� If all components of x1 increase when (x2)j increases,
then

min c0x = �1:

) FINISHED!

If not, we have the situation shown in Fig. 1.



x1 x2

(xB,0)

1 r n

(x2)j

x1 x2

(xB,0)

1 r n

(x2)j

Figure 1: Change in x1 when (x2)j increases from 0.

� The Simplex algorithm always converges if all basic
points are non-degenerate.

� Degenerate basic point: Try a di¤erent component
of x2. (FINISHED if impossible!)

� It is straightforward to construct a generalized Sim-
plex Algorithm for bounds of the form

li � xi � ui; i = 1; � � � ; n:



� If we LU -factorize B once, we can update the fac-
torization with the new column without making a
complete new factorization (N&W, Sec. 13.4).

� It is often preferable to take the "steepest ridge"
(fastest decrease in the objective) out from where
we are (N&W, Sec. 13.5).



Starting the Simplex Method

The Simplex method consists of two phases:

� Phase 1: Find a �rst basic point

� Phase 2: Solve the original problem

The Phase 1 algorithm:

1. Turn the signs in Ax = b so that b � 0:

2. Introduce additional variables y 2 Rr and solve the
extended problem

min (y1 + � � �+ yr) ;

[A I]

"
x
y

#
= b; x; y � 0:

(Note that [0 b]0 already is a basic point for the ex-
tended problem!).



Assume that the solution of the extended problem is"
x0
y0

#
:

� If y0 6= 0, then the original problem is infeasible
(
 = ?).

� If y0 = 0, then x0 is a basic point (= possible start
for the original problem).

� This is not the only Phase 1 algorithm.

1 EPILOGUE

� Open Problem: Are there LP algorithms of polyno-
mial complexity?



� The Simplex Method has exponential complexity in
the worst case (Kree�Minty�Cheval counterexample)

� Interior Point Methods (Khatchiyan, 1978): #Op _
O
�
n4L

�

� Karmankar (1984): #Op _ O
�
n3:5L

�

� Current record (?): Interior Barrier Primal�Dual meth-
ods, #Op _ O

�
n3L

�
. (We return to this method

after discussing penalty and barrier methods)

� Solving large LP problems is BIG business!

� Entering data into the computer for large LP prob-
lems is a lot of work. Look up a description of the
industry standard �MPS Data Format�on the inter-
net.



LINEAR PROGRAMMING IN  

MATLAB OPTIMIZATION TOOLBOX  

(may be a little outdated!) 
 

Basic function:  linprog 
 

Solves the general LP-problem  

. .

min ' ,x

eq eq

f x
Ax b

A x b

lb x ub

≤
=

≤ ≤
 

where f, x, b, beq, lb, and ub are vectors and A, Aeq are 
matrices (may be entered as sparse matrices) 

Syntax: 

x  =  linprog( f, A, b, Aeq, beq) 
x  = linprog( f, A, b, Aeq, beq, lb, ub) 
x  = linprog( f, A, b, Aeq, beq, lb, ub, x0) 
x  =  linprog( f, A, b, Aeq, beq, lb, ub, x0, options) 
 
[x,fval]       = linprog(...) 
[x,fval,exitflag]     = linprog(...) 
[x,fval,exitflag,output]    = linprog(...) 
[x,fval,exitflag,output,lambda]  = linprog(...) 

 



Example: The Standard form: 

min ' ,
,

0.

c x
Ax b
x
=
≥

 

x = linprog(c,[ ],[ ],A,b,zeros(size(c)),[ ]) 

 
• Note the Matlab convention with placeholders, ”[ ]” 

 
 
INPUT: 
 
X0: Starting point. Used only for medium problems (Nelder-
Mead amoeba). 
 
Options: Structure of parameters  
 
 

LargeScale: 'on'/’off’ 
 
Display:  'off'/'iter'/'final' (large scale problems)  
 
MaxIter:  Max number of iterations 
 
Simplex:  'on'/’off’ (‘on’ ignores x0) 
 
TolFun:  Objective tolerance (large scale 

problems) 
 
 



OUTPUT: 
 
x,fval: Solution and objective 
 
exitflag:  

1 Iteration terminated OK 
0 Number of iterations exceeded MaxIter 
-2 No feasible point found 
-3 Problem is unbounded 
-4 NaN value encountered 
-5 Both primal and dual are infeasible 
-7 Search direction became too small 

 
output:   Structure of iteration information 
 
iterations: Number of iterations  
algorithm: Algorithm used 
cgiterations: The number of PCG iterations (large-scale 

algorithm only) 
message: Output message 
 
lambda:  Structure of Lagrange multipliers 
 
ineqlin:  for linear inequalities Ax ≤ b, 
eqlin   for linear equalities Aeqx = beq,  
lower  for lb, 
upper   for ub. 
 

ALGORITHMS: 

 

Small/Medium scale:  SIMPLEX-like including Phase 1 

Large scale:    Primal-dual inner method 



 

EXAMPLES FROM THE DOCUMENTATION 
 
A. Small Problem  
 
Find x that minimizes  

 
 

subject to  

 
 
First, enter the coefficients, then call LINPROG: 
 
f = [-5  -4  -6]'; 
A =  [ 1 -1  1 
         3  2  4 
         3  2  0 ]; 
b = [20  42 30]'; 
lb = zeros(3,1); 
[x,fval,exitflag,output,lambda] = … linprog(f,A,b,[],[],lb); 

 
x   =  [0  15  3] 
fval             = -78.0 
output:  
  iterations:  6 
        algorithm:  'large-scale: interior point' (!) 
     cgiterations: 0 
          message:  'Optimization terminated.' 
 
lambda.ineqlin  = [0  1.5  0.5] 
lambda.lower  = [1  0  0] 



For solution by the Simplex method: 
 
f = [-5  -4  -6]'; 
A =  [ 1 -1  1 
         3  2  4 
         3  2  0 ]; 
b = [20  42 30]'; 
lb = zeros(3,1); 
options = optimset('LargeScale','off','Simplex','on'); 
[x,fval,exitflag,output,lambda] = ... 
linprog(f,A,b,[],[],lb,[],[],options); 
 
(NB! If you forget enough placeholders, [ ] , you get the 
error message ”LINPROG only accepts inputs of data 
type double”) 
 
Now output gives: 
 
 
  iterations:   3 
  algorithm:   'medium scale: simplex' 
 cgiterations:  [] 
  message:   'Optimization terminated.' 
 
(same solution!) 
 



B Medium Problem     
  

      This problem is stored as a Matlab MAT-file. 
 

• 48 unknowns 
• 30 inequality constraints 
• 20 equality constraints 
• x ≥ 0 

 
 Entered into Matlab simply by 
 
 load sc50b 
 

A         30x48  (sparse) 
   Aeq       20x48 (sparse) 
   b         30x1     

beq       20x1       
   f      48x1   

lb        48x1 
 
 
Sparsity patterns: 
 

0 10 20 30 40

0
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20

30

nz = 66

0 10 20 30 40

0

10

20

nz = 52
 

           A (inequalitites)            Aeq (equalities) 
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⇒ load sc50b 
options = optimset('LargeScale','off','Simplex','on'); 
[x,fval,exitflag,output,lambda] =  ...    
 linprog(f,A,b,Aeq,beq,lb,[],[],options); 

 
x = [ 30  28 42 ... 102.4870] 
 
 
Only lambda.ineqlin(2) and lambda.ineqlin(3) equal to 0: 

only inequality 2 and 3 non-active. 
 
max(lambda.lower)= 8.2808e-015  ⇒   xi > 0 for i = 1,...,48. 
 
output =  

iterations:  43 
algorithm:  'medium scale: simplex' 
cgiterations:  [] 
message:  'Optimization terminated.' 
 
 

Large scale option: 
 
options = optimset('LargeScale','on'); 
[x,fval,exitflag,output,lambda] = ...  

linprog(f,A,b,Aeq,beq,lb,[],[],options); 
 

output =  
iterations:  8 
algorithm:  'large-scale: interior point' 
cgiterations:  0 
message:  'Optimization terminated.' 
 
Same solution! 



With display of results for each iteration: 
 
options = optimset('LargeScale','on','Display','iter'); 
 
 
  Residuals:   Primal     Dual     Duality    Total 
               Infeas    Infeas      Gap       Rel 
               A*x-b    A'*y+z-f    x'*z      Error 
  -------------------------------------------------- 
  Iter    0:  1.50e+03  2.19e+01  1.91e+04  1.00e+02 
  Iter    1:  1.15e+02  3.18e-15  3.62e+03  9.90e-01 
  Iter    2:  8.32e-13  1.96e-15  4.32e+02  9.48e-01 
  Iter    3:  3.51e-12  1.87e-15  7.78e+01  6.88e-01 
  Iter    4:  1.81e-11  3.50e-16  2.38e+01  2.69e-01 
  Iter    5:  2.63e-10  1.23e-15  5.05e+00  6.89e-02 
  Iter    6:  5.88e-11  2.72e-16  1.64e-01  2.34e-03 
  Iter    7:  2.61e-12  2.59e-16  1.09e-05  1.55e-07 
  Iter    8:  7.97e-14  5.67e-13  1.09e-11  3.82e-12 
Optimization terminated. 
 

 
FOR MORE INFO: Read documentation of linprog! 
 



OPTIMIZATION SOFTWARE – 2010 
http://wiki.mcs.anl.gov/NEOS/index.php/NEOS_Wiki 

 
(NEOS = Network-Enabled Optimization System) 

 

• AIMMS modeling system  
• AMPL modeling language.  
• ANALYZE linear programming model 

analysis.  
• APOPT - nonlinear programming.  
• APMonitor modeling language.  
• ASA - adaptive simulated annealing.  
• BPMPD - linear programming.  
• BQPD - quadratic programming.  
• BT - minimization.  
• BTN - block truncated Newton.  
• CBC - mixed-integer linear 

programming.  
• CML - constrained maximum 

likelihood.  
• CNM - linear algebra and minimization.  
• CO - constrained optimization.  
• COMPACT - design optimization.  
• CONOPT - nonlinear programming.  
• CONSOL-OPTCAD - engineering 

system design.  
• CONTIN - systems of nonlinear 

equations.  
• CLP - linear programming.  
• CPLEX - linear programming.  
• C-WHIZ - linear programming models.  
• DATAFORM - model management 

system.  
• DFNLP - nonlinear data fitting.  
• DOC - Design Optimization Control 

Program.  
• DONLP2 - nonlinear constrained 

optimization.  
• DOT - Design Optimization Tools.  
• EASY FIT - parameter estimation in 

dynamic systems.  
• Excel and Quattro Pro Solvers - 

spreadsheet-based linear, integer and 
nonlinear programming  

• EZMOD - modeling environment for 
decision support systems  

• FortMP - linear and mixed integer 
quadratic programming.  

• FSQP - nonlinear and minmax 
constrained optimization, with feasible 
iterates.  

• GAMS - General Algebraic Modeling 
System.  

• GAUSS - matrix programming 
language.  

• GENESIS - structural optimization 
software.  

• GENOS 1.0 - nonlinear network 
optimization.  

• GINO - nonlinear programming.  
• GRG2 - nonlinear programming.  
• GOM - Global Optimization for 

Mathematica.  
• GUROBI - linear programming.  
• HOMPACK - nonlinear equations and 

polynomials.  
• HOPDM - linear programming (interior-

point).  
• HARWELL Library - linear and 

nonlinear programming, nonlinear 
equations, data fitting.  

• HS/LP Linear Optimizer - linear 
programming.  

• ILOG - constraint-based programming 
and nonlinear optimization.  

• IMSL - Fortran and C Library.  
• IPOPT - nonlinear programming.  
• KNITRO - nonlinear programming.  
• KORBX - linear programming.  
• LAMPS - linear and mixed-integer 

programming.  
• LANCELOT - large-scale problems.  
• LBFGS - unconstrained minimization.  
• LBFGS-B - bound-constrained 

minimization.  
• LGO IDE - continuous and Lipschitz 

global optimization.  



• LINDO - linear, mixed-integer and 
quadratic programming.  

• LINGO - modeling language.  
• LIPSOL - linear programming.  
• LNOS - linear programming/network 

flow problems.  
• LOQO - Linear programming, 

unconstrained and constrained nonlinear 
optimization.  

• LP88 and BLP88 - linear programming.  
• LSGRG2 - nonlinear programming.  
• LSNNO - large scale optimization.  
• LSSOL - least squares problems.  
• M1QN3 - unconstrained optimization.  
• MATLAB - optimization toolbox.  
• MAXLIK - maximum likelihood 

estimation.  
• MCS - global optimization.  
• MILP88 - mixed integer programming.  
• MINOS - linear programming and 

nonlinear optimization.  
• MINTO - mixed integer linear 

programming.  
• MINPACK-1 - nonlinear equations and 

least squares.  
• MIPIII - mixed integer programming.  
• MODFIT - parameter estimation in 

dynamic systems.  
• MODLER - linear programming 

modeling language.  
• MODULOPT - unconstrained problems 

and simple bounds.  
• MOSEK - linear programming and 

convex optimization.  
• MPL - modeling system  
• MPSIII - mathematical programming 

system.  
• NAG C Library - nonlinear and 

quadratic programming, minimization  
• NAG Fortran Library - nonlinear and 

quadratic programming, minimization  
• NETFLOW - network optimization.  
• NITSOL - systems of nonlinear 

equations.  
• NLopt - local and global nonlinear 

optimization, including nonlinear 
constraints, with and without user-
supplied gradients  

• NLPE - minimization and least squares 
problems.  

• NLPJOB - Mulicriteria optimization.  
• NLPQL - nonlinear programming.  
• NLPQLB - nonlinear programming with 

constraints.  
• NLSSOL - constrained nonlinear least 

squares problems.  
• NLPSPR - nonlinear programming.  
• NOVA - nonlinear programming.  
• NPSOL - nonlinear programming.  
• ODRPACK - NLS and ODR problems.  
• OML - linear and mixed-integer 

programming, model management.  
• OPL Studio - optimization language and 

solver environment.  
• OPTDES - design optimization tool.  
• OPTECH - global optimization.  
• OptiA - unconstrained, constrained, 

quadratic, minimax, nonsmooth, and 
global optimization  

• OPTIMA Library - optimization and 
sensitivity analysis.  

• OPTIMAX - component software for 
optimization  

• OPTMUM - optimization.  
• OPTPACK - constrained and 

unconstrained optimization.  
• OptQuest - global optimization  
• OSL - linear, quadratic and mixed-

integer programming.  
• PCOMP - modelling language with 

automatic differentiation.  
• PCx - linear programming with a 

primal-dual interior-point method.  
• PDEFIT - parameter estimation in 

partial differential equations.  
• PETSc - parallel solution of nonlinear 

equations and unconstrained 
minimization problems.  

• PLAM - algebraic modeling language 
for mixed integer programming, 
constraint logic programming, etc.  

• PORT 3 - minimization, least squares, 
etc.  

• PROC LP - linear and integer 
programming.  

• PROC NETFLOW - network 
optimization.  



• PROC NLP - various quadratic and 
nonlinear optimization problems.  

• PROPT - optimal control software for 
MATLAB users.  

• Q01SUBS - quadratic programming for 
matrices.  

• QAPP - quadratic assignment problems.  
• QL - quadratic programming.  
• QPOPT - linear and quadratic problems.  
• RANDMOD - linear programming 

model randomizer.  
• SCIP - mixed-integer linear 

programming.  
• SIMUSOLV - modeling software.  
• SPRNLP - sparse and dense nonlinear 

programming, sparse nonlinear least 
squares, including the SOCS package 
for optimal control  

• SPEAKEASY - numerical problems 
and operations research.  

• SNOPT - large-scale quadratic and 
nonlinear programming problems.  

• SQOPT - large-scale linear and convex 
quadratic programming problems.  

• SQP - nonlinear programming.  
• SYMPHONY - mixed-integer linear 

programming.  

• SYNAPS Pointer - multidisciplinary 
design optimization software  

• SYSFIT - parameter estimation in 
systems of nonlinear equations.  

• TENMIN - unconstrained optimization.  
• TENSOLVE - nonlinear equations and 

least squares.  
• TN/TNBC - minimization.  
• TNPACK - nonlinear unconstrained 

minimization.  
• TSA88 - network linear programming.  
• TOMLAB - Matlab Optimization.  
• UNCMIN - unconstrained optimization.  
• VE08 - nonlinear optimization.  
• VE10 - nonlinear least squares.  
• VIG and VIMDA - decision support 

system.  
• What'sBest - linear and mixed integer 

programming.  
• WHIZARD - linear programming, 

mixed-integer programming.  
• XLSOL - Linear, integer and nonlinear 

programming for AMPL models  
• XPRESS-MP from Dash Associates - 

linear and integer programming.  
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Arc

Node

Source

Sink

Paths

1.00

-1.00

An arc is characterized by

• Prize pr. flow unit along arc
• Lower bound (for initiating transport)
• Upper bound (capacity) 

Sources: (Production/providers) 
• Capacity
• Cost pr. unit delivered to the network

Sinks (Consumers/receivers):
• Capacity
• Income to network from deliveries

Source: Production  b>0.
Sink: Absorption,  b < 0.



Variables                             (flow in the arcs) 

NB! 2 variables for each arc: 2 directions

{ }, 0.i ix x x= ≥

inflow outflow

outflow inflow

i i

s i i

x x

b x x

=

= −

∑ ∑

∑ ∑

Node:

Source/Sink:

A balanced network: 
Sources/sinks

0sb =∑

Price for delivery: ( )
arcs

'i if x c x c x= =∑



Cost for one unit along arc  “i”:

Upper bound on capacity for arc “i”:

Lower bound on capacity for arc “i”:

{ }
{ }
{ }

i

i

i

c

ub

lb

The LP formulation:

outflow inflow

min '
, 1,..., ,

.

x

i i n

c x
x x b n Nodes

lb x ub

− = =

≤ ≤

∑ ∑

min 'x

eq eq

c x
A x b

lb x ub
=

≤ ≤

The matrix is a sparse matrix with only -1, 0, and -1



Simsys_sparse

An open exchange for the MATLAB and Simulink user community

http://www.mathworks.com/matlabcentral/

Per Bergström
Luleå University of Technology



Prescribe:
• Numbers of sources and sinks
• Max number of arcs around one node
• Min number of arcs around one node
• Random upper bound
• Distribution of nodes
• Interactive network modification
• Random costs

The algorithm provides:
• Number of nodes
• Upper bound of capacity
• Aeq matrix
• Balanced production/consumption at the sources and sinks

RANDOM NETWORK GENERATION

[Aeq,beq,lb,ub,c]=simsys_sparse(100);
Solution in Matlab: x = linprog(c,[],[],Aeq,beq,lb,ub)



RANDOMLY GENERATED NETWORK
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The LP-problem:

• Number of arcs:  304

• Lower bounds:  0

• Upper bounds:  -

• Equality constraints: 48
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Practical Optimization: A Gentle Introduction
John W. Chinneck
Systems and Computer Engineering
Carleton University
Ottawa, Ontario K1S 5B6
Canada
http://www.sce.carleton.ca/faculty/chinneck/po.html

(very soft introduction ☺)
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