
THE LP PROBLEM IN STANDARD

FORM

min
x2Rn

c0x;

Ax = b; x � 0:

� x � 0 means xi � 0; i = 1; � � � ; n:

� A of size r � n is supposed to have full rank r:

�
 is a polytope (polyhedron if bounded).

� This is a convex optimization problem) KKT con-
ditions su¢ cient for a global minimum.

GEOMETRY OF THE FEASIBLE SET

De�nition: The point xe 2 @
 (= the boundary of

) is an extreme point if

xe = �y + (1� �) z ; y; z 2
 ; 0 < � < 1

implies that y = z = xe.

Where are the extreme points for a line segment, for R
and Rn+, a cube, and a sphere (all sets closed)?

The extreme points for
 are the vertices.

VertexEdges

Face

VertexEdges

Face

De�nition: A feasible point x (x � 0, Ax = b) is called
a basic point if there is an index set B = fi1; � � � ; irg,
where the corresponding subset of columns of A,n

ai1; � � � ; air
o
;

are linearly independent, and xi = 0 for all i =2 B.

If xi happens to be 0 also for some i 2 B, we say that
the basic point is degenerate.

For a basic point, the corresponding r � r matrix

B =
h
ai1; � � � ; air

i
;

will be non-singular, and the equation BxB = b has a
unique solution.

The Fundamental Theorem for LP (N&W Theorem
13.2):

1. If
 6= ?, it contains basic points.

2. If there are optimal solutions, there are optimal basic
points (basic solutions).

Theorem (N&W Theorem 13.3): The basic points are
the extreme points of
.

The number of basic points is between 1 (because of the
�rst statement in the Fundamental Theorem) and

�
n
r

�
:

THE SIMPLEX ALGORITHM

� The Simplex Algorithm is reported to have been dis-
covered by G. B. Dantzig in 1947.

� The idea of the Simplex Algorithm is to search for
the minimum by going from vertex to vertex (from
basic point to basic point) in
.

� Hand calculations are never used anymore!

The Simplex Iteration Step

We assume that the problem has the standard form, and
that we are located in a basic point which, after a re-
arrangement of variables, has the form

x =

"
xB
0

#
:

The partition is therefore according toA = [B N], where
B is non-singular, and

Ax = [B N]

"
xB
0

#
= BxB = b:

Split a general x 2
 in the same way,

Ax = [B N]

"
x1
x2

#
= Bx1 +Nx2 = b:

Hence,

x1 = B
�1 (b�Nx2) = xB �B�1Nx2:

Note also that

f (x) = c0x = [c1 c2]

"
x1
x2

#
= c01x1 + c

0
2x2

= c01
�
xB �B�1Nx2

�
+ c02x2

= c01xB +
�
c02 � c01B�1N

�
x2

Around [xB 0]
0, we may express both x1 and f (x) in

terms of x2:

We are located at x1 = xB, x2 = 0, and try to change
one of the components (x2)j of x2 so that

f (x) = c01xB +
�
c02 � c01B�1N

�
x2

decreases.

� If
�
c02 � c01B�1N

�
� 0) FINISHED!

Assume that
�
c02 � c01B�1N

�
j
< 0:

� If all components of x1 increase when (x2)j increases,
then

min c0x = �1:

) FINISHED!

If not, we have the situation shown in Fig. 1.

x1 x2

(xB,0)

1 r n

(x2)j

x1 x2

(xB,0)

1 r n

(x2)j

Figure 1: Change in x1 when (x2)j increases from 0.

� The Simplex algorithm always converges if all basic
points are non-degenerate.

� Degenerate basic point: Try a di¤erent component
of x2. (FINISHED if impossible!)

� It is straightforward to construct a generalized Sim-
plex Algorithm for bounds of the form

li � xi � ui; i = 1; � � � ; n:

� If we LU -factorize B once, we can update the fac-
torization with the new column without making a
complete new factorization (N&W, Sec. 13.4).

� It is often preferable to take the "steepest ridge"
(fastest decrease in the objective) out from where
we are (N&W, Sec. 13.5).

Starting the Simplex Method

The Simplex method consists of two phases:

� Phase 1: Find a �rst basic point

� Phase 2: Solve the original problem

The Phase 1 algorithm:

1. Turn the signs in Ax = b so that b � 0:

2. Introduce additional variables y 2 Rr and solve the
extended problem

min (y1 + � � �+ yr) ;

[A I]

"
x
y

#
= b; x; y � 0:

(Note that [0 b]0 already is a basic point for the ex-
tended problem!).

Assume that the solution of the extended problem is"
x0
y0

#
:

� If y0 6= 0, then the original problem is infeasible
(
 = ?).

� If y0 = 0, then x0 is a basic point (= possible start
for the original problem).

� This is not the only Phase 1 algorithm.

1 EPILOGUE

� Open Problem: Are there LP algorithms of polyno-
mial complexity?

� The Simplex Method has exponential complexity in
the worst case (Kree�Minty�Cheval counterexample)

� Interior Point Methods (Khatchiyan, 1978): #Op _
O
�
n4L

�

� Karmankar (1984): #Op _ O
�
n3:5L

�

� Current record (?): Interior Barrier Primal�Dual meth-
ods, #Op _ O

�
n3L

�
. (We return to this method

after discussing penalty and barrier methods)

� Solving large LP problems is BIG business!

� Entering data into the computer for large LP prob-
lems is a lot of work. Look up a description of the
industry standard �MPS Data Format�on the inter-
net.

LINEAR PROGRAMMING IN

MATLAB OPTIMIZATION TOOLBOX

(may be a little outdated!)

Basic function: linprog

Solves the general LP-problem

. .

min ' ,x

eq eq

f x
Ax b

A x b

lb x ub

≤
=

≤ ≤

where f, x, b, beq, lb, and ub are vectors and A, Aeq are
matrices (may be entered as sparse matrices)

Syntax:

x = linprog(f, A, b, Aeq, beq)
x = linprog(f, A, b, Aeq, beq, lb, ub)
x = linprog(f, A, b, Aeq, beq, lb, ub, x0)
x = linprog(f, A, b, Aeq, beq, lb, ub, x0, options)

[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Example: The Standard form:

min ' ,
,

0.

c x
Ax b
x
=
≥

x = linprog(c,[],[],A,b,zeros(size(c)),[])

• Note the Matlab convention with placeholders, ”[]”

INPUT:

X0: Starting point. Used only for medium problems (Nelder-
Mead amoeba).

Options: Structure of parameters

LargeScale: 'on'/’off’

Display: 'off'/'iter'/'final' (large scale problems)

MaxIter: Max number of iterations

Simplex: 'on'/’off’ (‘on’ ignores x0)

TolFun: Objective tolerance (large scale

problems)

OUTPUT:

x,fval: Solution and objective

exitflag:

1 Iteration terminated OK
0 Number of iterations exceeded MaxIter
-2 No feasible point found
-3 Problem is unbounded
-4 NaN value encountered
-5 Both primal and dual are infeasible
-7 Search direction became too small

output: Structure of iteration information

iterations: Number of iterations
algorithm: Algorithm used
cgiterations: The number of PCG iterations (large-scale

algorithm only)
message: Output message

lambda: Structure of Lagrange multipliers

ineqlin: for linear inequalities Ax ≤ b,
eqlin for linear equalities Aeqx = beq,
lower for lb,
upper for ub.

ALGORITHMS:

Small/Medium scale: SIMPLEX-like including Phase 1

Large scale: Primal-dual inner method

EXAMPLES FROM THE DOCUMENTATION

A. Small Problem

Find x that minimizes

subject to

First, enter the coefficients, then call LINPROG:

f = [-5 -4 -6]';
A = [1 -1 1
 3 2 4
 3 2 0];
b = [20 42 30]';
lb = zeros(3,1);
[x,fval,exitflag,output,lambda] = … linprog(f,A,b,[],[],lb);

x = [0 15 3]
fval = -78.0
output:
 iterations: 6
 algorithm: 'large-scale: interior point' (!)
 cgiterations: 0
 message: 'Optimization terminated.'

lambda.ineqlin = [0 1.5 0.5]
lambda.lower = [1 0 0]

For solution by the Simplex method:

f = [-5 -4 -6]';
A = [1 -1 1
 3 2 4
 3 2 0];
b = [20 42 30]';
lb = zeros(3,1);
options = optimset('LargeScale','off','Simplex','on');
[x,fval,exitflag,output,lambda] = ...
linprog(f,A,b,[],[],lb,[],[],options);

(NB! If you forget enough placeholders, [] , you get the
error message ”LINPROG only accepts inputs of data
type double”)

Now output gives:

 iterations: 3
 algorithm: 'medium scale: simplex'
 cgiterations: []
 message: 'Optimization terminated.'

(same solution!)

B Medium Problem

 This problem is stored as a Matlab MAT-file.

• 48 unknowns
• 30 inequality constraints
• 20 equality constraints
• x ≥ 0

 Entered into Matlab simply by

 load sc50b

A 30x48 (sparse)
 Aeq 20x48 (sparse)
 b 30x1

beq 20x1
 f 48x1

lb 48x1

Sparsity patterns:

0 10 20 30 40

0

10

20

30

nz = 66

0 10 20 30 40

0

10

20

nz = 52

 A (inequalitites) Aeq (equalities)

Harald Krogstad
Cross-Out

⇒ load sc50b
options = optimset('LargeScale','off','Simplex','on');
[x,fval,exitflag,output,lambda] = ...
 linprog(f,A,b,Aeq,beq,lb,[],[],options);

x = [30 28 42 ... 102.4870]

Only lambda.ineqlin(2) and lambda.ineqlin(3) equal to 0:

only inequality 2 and 3 non-active.

max(lambda.lower)= 8.2808e-015 ⇒ xi > 0 for i = 1,...,48.

output =

iterations: 43
algorithm: 'medium scale: simplex'
cgiterations: []
message: 'Optimization terminated.'

Large scale option:

options = optimset('LargeScale','on');
[x,fval,exitflag,output,lambda] = ...

linprog(f,A,b,Aeq,beq,lb,[],[],options);

output =
iterations: 8
algorithm: 'large-scale: interior point'
cgiterations: 0
message: 'Optimization terminated.'

Same solution!

With display of results for each iteration:

options = optimset('LargeScale','on','Display','iter');

 Residuals: Primal Dual Duality Total
 Infeas Infeas Gap Rel
 A*x-b A'*y+z-f x'*z Error
 --
 Iter 0: 1.50e+03 2.19e+01 1.91e+04 1.00e+02
 Iter 1: 1.15e+02 3.18e-15 3.62e+03 9.90e-01
 Iter 2: 8.32e-13 1.96e-15 4.32e+02 9.48e-01
 Iter 3: 3.51e-12 1.87e-15 7.78e+01 6.88e-01
 Iter 4: 1.81e-11 3.50e-16 2.38e+01 2.69e-01
 Iter 5: 2.63e-10 1.23e-15 5.05e+00 6.89e-02
 Iter 6: 5.88e-11 2.72e-16 1.64e-01 2.34e-03
 Iter 7: 2.61e-12 2.59e-16 1.09e-05 1.55e-07
 Iter 8: 7.97e-14 5.67e-13 1.09e-11 3.82e-12
Optimization terminated.

FOR MORE INFO: Read documentation of linprog!

OPTIMIZATION SOFTWARE – 2010
http://wiki.mcs.anl.gov/NEOS/index.php/NEOS_Wiki

(NEOS = Network-Enabled Optimization System)

• AIMMS modeling system
• AMPL modeling language.
• ANALYZE linear programming model

analysis.
• APOPT - nonlinear programming.
• APMonitor modeling language.
• ASA - adaptive simulated annealing.
• BPMPD - linear programming.
• BQPD - quadratic programming.
• BT - minimization.
• BTN - block truncated Newton.
• CBC - mixed-integer linear

programming.
• CML - constrained maximum

likelihood.
• CNM - linear algebra and minimization.
• CO - constrained optimization.
• COMPACT - design optimization.
• CONOPT - nonlinear programming.
• CONSOL-OPTCAD - engineering

system design.
• CONTIN - systems of nonlinear

equations.
• CLP - linear programming.
• CPLEX - linear programming.
• C-WHIZ - linear programming models.
• DATAFORM - model management

system.
• DFNLP - nonlinear data fitting.
• DOC - Design Optimization Control

Program.
• DONLP2 - nonlinear constrained

optimization.
• DOT - Design Optimization Tools.
• EASY FIT - parameter estimation in

dynamic systems.
• Excel and Quattro Pro Solvers -

spreadsheet-based linear, integer and
nonlinear programming

• EZMOD - modeling environment for
decision support systems

• FortMP - linear and mixed integer
quadratic programming.

• FSQP - nonlinear and minmax
constrained optimization, with feasible
iterates.

• GAMS - General Algebraic Modeling
System.

• GAUSS - matrix programming
language.

• GENESIS - structural optimization
software.

• GENOS 1.0 - nonlinear network
optimization.

• GINO - nonlinear programming.
• GRG2 - nonlinear programming.
• GOM - Global Optimization for

Mathematica.
• GUROBI - linear programming.
• HOMPACK - nonlinear equations and

polynomials.
• HOPDM - linear programming (interior-

point).
• HARWELL Library - linear and

nonlinear programming, nonlinear
equations, data fitting.

• HS/LP Linear Optimizer - linear
programming.

• ILOG - constraint-based programming
and nonlinear optimization.

• IMSL - Fortran and C Library.
• IPOPT - nonlinear programming.
• KNITRO - nonlinear programming.
• KORBX - linear programming.
• LAMPS - linear and mixed-integer

programming.
• LANCELOT - large-scale problems.
• LBFGS - unconstrained minimization.
• LBFGS-B - bound-constrained

minimization.
• LGO IDE - continuous and Lipschitz

global optimization.

• LINDO - linear, mixed-integer and
quadratic programming.

• LINGO - modeling language.
• LIPSOL - linear programming.
• LNOS - linear programming/network

flow problems.
• LOQO - Linear programming,

unconstrained and constrained nonlinear
optimization.

• LP88 and BLP88 - linear programming.
• LSGRG2 - nonlinear programming.
• LSNNO - large scale optimization.
• LSSOL - least squares problems.
• M1QN3 - unconstrained optimization.
• MATLAB - optimization toolbox.
• MAXLIK - maximum likelihood

estimation.
• MCS - global optimization.
• MILP88 - mixed integer programming.
• MINOS - linear programming and

nonlinear optimization.
• MINTO - mixed integer linear

programming.
• MINPACK-1 - nonlinear equations and

least squares.
• MIPIII - mixed integer programming.
• MODFIT - parameter estimation in

dynamic systems.
• MODLER - linear programming

modeling language.
• MODULOPT - unconstrained problems

and simple bounds.
• MOSEK - linear programming and

convex optimization.
• MPL - modeling system
• MPSIII - mathematical programming

system.
• NAG C Library - nonlinear and

quadratic programming, minimization
• NAG Fortran Library - nonlinear and

quadratic programming, minimization
• NETFLOW - network optimization.
• NITSOL - systems of nonlinear

equations.
• NLopt - local and global nonlinear

optimization, including nonlinear
constraints, with and without user-
supplied gradients

• NLPE - minimization and least squares
problems.

• NLPJOB - Mulicriteria optimization.
• NLPQL - nonlinear programming.
• NLPQLB - nonlinear programming with

constraints.
• NLSSOL - constrained nonlinear least

squares problems.
• NLPSPR - nonlinear programming.
• NOVA - nonlinear programming.
• NPSOL - nonlinear programming.
• ODRPACK - NLS and ODR problems.
• OML - linear and mixed-integer

programming, model management.
• OPL Studio - optimization language and

solver environment.
• OPTDES - design optimization tool.
• OPTECH - global optimization.
• OptiA - unconstrained, constrained,

quadratic, minimax, nonsmooth, and
global optimization

• OPTIMA Library - optimization and
sensitivity analysis.

• OPTIMAX - component software for
optimization

• OPTMUM - optimization.
• OPTPACK - constrained and

unconstrained optimization.
• OptQuest - global optimization
• OSL - linear, quadratic and mixed-

integer programming.
• PCOMP - modelling language with

automatic differentiation.
• PCx - linear programming with a

primal-dual interior-point method.
• PDEFIT - parameter estimation in

partial differential equations.
• PETSc - parallel solution of nonlinear

equations and unconstrained
minimization problems.

• PLAM - algebraic modeling language
for mixed integer programming,
constraint logic programming, etc.

• PORT 3 - minimization, least squares,
etc.

• PROC LP - linear and integer
programming.

• PROC NETFLOW - network
optimization.

• PROC NLP - various quadratic and
nonlinear optimization problems.

• PROPT - optimal control software for
MATLAB users.

• Q01SUBS - quadratic programming for
matrices.

• QAPP - quadratic assignment problems.
• QL - quadratic programming.
• QPOPT - linear and quadratic problems.
• RANDMOD - linear programming

model randomizer.
• SCIP - mixed-integer linear

programming.
• SIMUSOLV - modeling software.
• SPRNLP - sparse and dense nonlinear

programming, sparse nonlinear least
squares, including the SOCS package
for optimal control

• SPEAKEASY - numerical problems
and operations research.

• SNOPT - large-scale quadratic and
nonlinear programming problems.

• SQOPT - large-scale linear and convex
quadratic programming problems.

• SQP - nonlinear programming.
• SYMPHONY - mixed-integer linear

programming.

• SYNAPS Pointer - multidisciplinary
design optimization software

• SYSFIT - parameter estimation in
systems of nonlinear equations.

• TENMIN - unconstrained optimization.
• TENSOLVE - nonlinear equations and

least squares.
• TN/TNBC - minimization.
• TNPACK - nonlinear unconstrained

minimization.
• TSA88 - network linear programming.
• TOMLAB - Matlab Optimization.
• UNCMIN - unconstrained optimization.
• VE08 - nonlinear optimization.
• VE10 - nonlinear least squares.
• VIG and VIMDA - decision support

system.
• What'sBest - linear and mixed integer

programming.
• WHIZARD - linear programming,

mixed-integer programming.
• XLSOL - Linear, integer and nonlinear

programming for AMPL models
• XPRESS-MP from Dash Associates -

linear and integer programming.

TMA 4180 Optimeringsteori

Minimum Cost Network Flow
Analysis Using LP

Harald E. Krogstad
March 2007

Arc

Node

Source

Sink

Paths

1.00

-1.00

An arc is characterized by

• Prize pr. flow unit along arc
• Lower bound (for initiating transport)
• Upper bound (capacity)

Sources: (Production/providers)
• Capacity
• Cost pr. unit delivered to the network

Sinks (Consumers/receivers):
• Capacity
• Income to network from deliveries

Source: Production b>0.
Sink: Absorption, b < 0.

Variables (flow in the arcs)

NB! 2 variables for each arc: 2 directions

{ }, 0.i ix x x= ≥

inflow outflow

outflow inflow

i i

s i i

x x

b x x

=

= −

∑ ∑

∑ ∑

Node:

Source/Sink:

A balanced network:
Sources/sinks

0sb =∑

Price for delivery: ()
arcs

'i if x c x c x= =∑

Cost for one unit along arc “i”:

Upper bound on capacity for arc “i”:

Lower bound on capacity for arc “i”:

{ }
{ }
{ }

i

i

i

c

ub

lb

The LP formulation:

outflow inflow

min '
, 1,..., ,

.

x

i i n

c x
x x b n Nodes

lb x ub

− = =

≤ ≤

∑ ∑

min 'x

eq eq

c x
A x b

lb x ub
=

≤ ≤

The matrix is a sparse matrix with only -1, 0, and -1

Simsys_sparse

An open exchange for the MATLAB and Simulink user community

http://www.mathworks.com/matlabcentral/

Per Bergström
Luleå University of Technology

Prescribe:
• Numbers of sources and sinks
• Max number of arcs around one node
• Min number of arcs around one node
• Random upper bound
• Distribution of nodes
• Interactive network modification
• Random costs

The algorithm provides:
• Number of nodes
• Upper bound of capacity
• Aeq matrix
• Balanced production/consumption at the sources and sinks

RANDOM NETWORK GENERATION

[Aeq,beq,lb,ub,c]=simsys_sparse(100);
Solution in Matlab: x = linprog(c,[],[],Aeq,beq,lb,ub)

RANDOMLY GENERATED NETWORK

5.44

-4.54

-0.16

-0.73

The LP-problem:

• Number of arcs: 304

• Lower bounds: 0

• Upper bounds: -

• Equality constraints: 48

50 100 150 200 250 300

10
20
30
40

Aeq-matrix:

50 100 150 200 250 300
4

6

8

10

12

14

16

18

Costs

Arc number

C
os

t p
r.

flo
w

 u
ni

t

50 100 150 200 250 300

1

2

3

4

LP solution

Arc

Fl
ow

 (x
)

5.44

-4.54

-0.16

-0.73

-1.13

0.72 -0.69

-1.00

0.38

-0.92
2.34

0.22 0.40 -0.32

()
()

dim 3782

dim 506 3782eq

x

A

=

= ×

500 1000 1500 2000 2500 3000 3500

0.2

0.4

0.6

0.8

1

1.2

1.4

Arc number

Fl
ow

 (x
)

Practical Optimization: A Gentle Introduction
John W. Chinneck
Systems and Computer Engineering
Carleton University
Ottawa, Ontario K1S 5B6
Canada
http://www.sce.carleton.ca/faculty/chinneck/po.html

(very soft introduction ☺)

	LP Formulation
	SIMPLEX ALGORITHM
	Starting the Simplex Method
	EPILOGUE
	LP MATLAB OPT. T.BOX
	OPTIMIZATION SOFTWARE

